Фотосинтез и его значение

Плюсы и минусы солнечных электростанций

Достоинства:

  • Солнечная энергия является возобновляемым источником энергии. При этом сама по себе она общедоступная и бесплатная.
  • Солнечные установки достаточно безопасны в использовании.
  • Подобные электростанции являются полностью автономными.
  • Они отличаются экономностью и быстрой окупаемостью. Основные затраты происходят только лишь на необходимое оборудование и в дальнейшем требуют минимальных вложений.
  • Еще одна отличительная черта – это стабильность в работе. На подобных станциях практически не бывает скачков напряжения.
  • Они не прихотливы в обслуживании и достаточно просты в использовании.
  • Также для оборудования СЭС характерный долгий эксплуатационный период.

Недостатки:

  • Как источник энергии солнечной системы очень чувствительны к климату, погодным условиям и времени суток. Подобная электростанция не будет эффективно и продуктивно работать ночью или в пасмурный день.
  • Более низкая продуктивность в широтах с яркой сменой сезонов. Максимально эффективны в местности, где количество солнечных дней в году наиболее близко к 100%.
  • Очень высокая и малодоступная стоимость оборудования для солнечных установок.
  • Потребность в проведении периодических очисток от загрязнений панелей и поверхностей. Иначе меньшее количество радиации поглощается и падает продуктивность.
  • Значительное повышение температуры воздуха в пределах электростанции.
  • Потребность в использовании местности с огромной площадью.
  • Дальнейшие трудности в процессе утилизации составляющих станции, в особенности фотоэлементов, после окончания срока их эксплуатации.

Как и в любой производственной сфере, в переработке и преобразовании солнечной энергии есть свои сильные и слабые стороны

Очень важно, чтобы преимущества перекрывали недостатки, в таком случае работа будет оправдана

https://youtube.com/watch?v=YOK0h9Ro-kM

Сейчас большинство разработок в данной отрасли направлены на оптимизацию и улучшение функционирования и использования уже существующих методов и на разработку новых, более безопасных и продуктивных.

Преобразование солнечной энергии в электричество

Фотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта. Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели:

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.


Солнечный свет концентрируется на башне

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

Световая и темновая фазы фотосинтеза. Их взаимосвязь.

В 1905 году английский физиолог Ф. Блэкман обнаружил, что скорость фотосинтеза не может увеличиваться бесконечно, существуют ограничивающие её факторы. Исходя из этого, он предложил две фазы фотосинтеза:

  1. Световая;
  2. Темновая..

При низкой освещенности скорость световых откликов увеличивается пропорционально увеличению интенсивности света, и, помимо этого, эти реакции не зависят от температуры, поскольку для их прохождения не требуются ферменты. На тилакоидных мембранах осуществляются световые реакции.

Наоборот, скорость темновых реакций увеличивается с ростом температуры; однако при достижении температурного порога 30 ° C этот рост прекращается, что указывает на ферментативный характер этих превращений, которые происходят в строме

Также важно отметить, что свет тоже оказывает некоторое влияние на темновые реакции, несмотря на их название

Световая фаза фотосинтеза происходит на тилакоидных мембранах, несущих несколько типов белковых комплексов, главными из которых являются фотосистемы I и II, а также АТФ-синтаза. В составе фотосистем находятся пигментные комплексы, в которых, помимо хлорофилла, присутствуют также каротиноиды. Каротиноиды захватывают свет в областях спектра, где нет хлорофилла, и помимо этого, защищают хлорофилл от повреждения интенсивным светом.

Помимо пигментных комплексов, фотосистемы также включают ряд акцепторных белков, последовательно переносящих электроны от молекул хлорофилла друг к другу. Последовательность этих белковых молекул называется цепью переноса электронов хлоропластов.

Особый комплекс белков непосредственно связан с фотосистемой II, обеспечивающей выделение кислорода при таком процессе как фотосинтез. Этот комплекс выделения кислорода содержит ионы марганца и хлора.

В световой фазе световые кванты или фотоны, падающие на молекулы хлорофилла, которые расположены на мембранах тилакоидов, переводят их в состояние возбуждения, характеризующееся более высокой энергией электронов. В этом случае возбужденные электроны из хлорофилла фотосистемы I передаются через цепочку посредников к водородному носителю НАДФ, который присоединяет протоны водорода, которые постоянно находятся в водном растворе:

НАДФ + 2e− + 2H+ → НАДФН+Н+.

Затем в темноте используется уменьшенный НАДФН+Н+. Электроны из хлорофилла фотосистемы II также переносятся по цепочке переноса электронов, но заполняют «электронные дыры» хлорофилла фотосистемы I. Недостаток электронов в хлорофилле фотосистемы II обусловлен выводом молекул воды при участии вышеупомянутых Кислородный комплекс развивается, наполняется. Разложение молекул воды, называемое фотолизом, производит протоны водорода и выделяет молекулярный кислород, который является побочным продуктом фотосинтеза:

Темная фаза —  это процесс преобразования углекислого газа в глюкозу в строме (пространстве между гранами) хлоропластов с участием энергии АТФ и НАДФ •Н. 

Результат темновых реакций: превращение углекислого газа в глюкозу, а затем в крахмал. Помимо стромальных молекул глюкозы образуются аминокислоты, нуклеотиды и спирты.

Рис. 2. Световая и темновая фазы фотосинтеза

6СО2 + 6Н2О → C6H12O6 + 6O2

Цикл Кальвина

В этой фазе происходит цикл Кальвина или трехуглеродный путь, биохимический путь, описанный в 1940 году американским исследователем Мелвином Кальвином. Открытие цикла было удостоено Нобелевской премии 1961 года.

В общем, описаны три основных стадии цикла: карбоксилирование акцептора CO.2, восстановление 3-фосфоглицерата и регенерация акцептора CO2.

Цикл начинается с включения или «фиксации» диоксида углерода. Он восстанавливает углерод до углеводов за счет добавления электронов и использует НАДФН в качестве восстанавливающей силы.

На каждом этапе цикла требуется включение молекулы диоксида углерода, которая реагирует с рибулозобисфосфатом, образуя два трехуглеродных соединения, которые восстанавливаются и регенерируют молекулу рибулозы. Три витка цикла приводят к образованию молекулы глицеральгидфосфата.

Следовательно, для образования шестиуглеродного сахара, такого как глюкоза, необходимо шесть циклов.

Светонезависимые реакции: восстановительный пентозофосфатный цикл

Фотосинтез включает в себя процесс, называемый восстановительным пентозофосфатным циклом, для использования энергии, накопленной в результате светозависимых реакций, для превращения CO2 в сахара, необходимые для роста растений. (Изображение предоставлено: wikipedia.org)

Восстановительный пентозофосфатный цикл, или Цикл Кальвина, использует энергию, накопленную в результате светозависимых реакций, для превращения CO2 в сахара, необходимые для роста растений. Эти реакции происходят в строме хлоропластов и не запускаются непосредственно светом – отсюда их название «светонезависимые реакции». Однако они все еще связаны со светом, поскольку цикл Кальвина подпитывается АТФ и НАДФН (оба из ранее упомянутых светозависимых реакций). ()

Во-первых, CO2 соединяется с рибулозо-1,5-бисфосфатом (РуБФ), который является пятиуглеродным акцептором. Затем он расщепляется на две молекулы трехуглеродного соединения – 3-фосфоглицериновой кислоты (3-ФГК). Реакция катализируется ферментом РуБФ-карбоксилаза/оксигеназа, также известным как рубиско.

Вторая стадия цикла Кальвина включает преобразование 3-ФГК в трехуглеродный сахар, называемый глицеральдегид-3-фосфатом (Г3Ф) – в процессе используются АТФ и НАДФН. Наконец, в то время как одни молекулы Г3Ф используются для производства глюкозы, другие рециркулируют обратно, чтобы получить РуБФ, который используется на первом этапе для принятия CO2. На каждую молекулу Г3Ф, которая производит глюкозу, пять молекул рециркулируют с образованием трех акцепторных молекул РуБФ.

Факторы, участвующие в фотосинтезе

Среди факторов окружающей среды, участвующих в эффективности фотосинтеза, выделяют: количество присутствующего СО2 и света, температуры, накопления фотосинтетических продуктов, количества кислорода и доступности воды.

Растительные факторы также играют фундаментальную роль, такие как возраст и статус роста.

Концентрация СО2 в окружающей среде он низкий (он не превышает 0,03% объема), поэтому любое минимальное изменение имеет замечательные последствия для фотосинтеза. Кроме того, растения способны только на 70 или 80% присутствующего углекислого газа.

Если нет никаких ограничений от других упомянутых переменных, мы обнаружим, что фотосинтез будет зависеть от количества СО2 доступный.

Точно так же интенсивность света имеет решающее значение. В средах с низкой интенсивностью процесс дыхания будет превосходить фотосинтез. По этой причине фотосинтез гораздо более активен в часы, когда интенсивность солнечного света высока, например, в первые часы утра..

Некоторые растения могут быть затронуты больше, чем другие. Например, кормовые травы не очень чувствительны к температурному фактору.

if(typeof ez_ad_units != ‘undefined’){ez_ad_units.push([[728,90],’fusedlearning_com-banner-1′,’ezslot_6′,109,’0′,’0′])};__ez_fad_position(‘div-gpt-ad-fusedlearning_com-banner-1-0’);Перенос генов для фотосинтеза

Хлоропласты клетки содержат ДНК, которая, в свою очередь, содержит гены. Ученые обнаружили, что хлоропласт не содержит всех генов, необходимых для управления процессом фотосинтеза. Другие гены фотосинтеза присутствуют в ДНК, расположенной в ядре клетки. Исследователи обнаружили, что по крайней мере один из необходимых генов водорослей также присутствует в ДНК клеток восточной изумрудной элизии. В какой-то момент ген водорослей стал частью ДНК слизня.

Тот факт, что хлоропласт, который не является органеллой животного, может выжить и функционировать в организме животного, удивителен. Еще более удивительным является тот факт, что геном (генетический материал) морского слизняка состоит как из его собственной ДНК, так и из ДНК водорослей. Ситуация является примером горизонтального переноса генов или переноса генов между неродственными организмами. Вертикальный перенос генов — это передача генов от родителя к его потомству.

Коллекция червей в мятном соусе в раковине на пляже

Fauceir1, через Wikimedia Commons, лицензия CC BY-SA 3.0

Мятный соус готовят из листьев мяты, уксуса и сахара. Это популярное дополнение к баранине в Великобритании, а в некоторых местах добавляется к пюре из гороха. Название соуса используется для названия крошечного пляжного червяка, обитающего в Европе. Группа червей в мятном соусе очень похожа на кулинарный соус при некоторых условиях освещения.

Как происходит обмен диоксида углерода и кислорода?

Устьица являются привратниками листа, обеспечивая газообмен между листом и окружающим воздухом. (Изображение предоставлено: Уолдо Нелл / 500px / Getty Images)

Растения поглощают CO2 из окружающего воздуха и выделяют воду и кислород через микроскопические поры на своих листьях, называемые устьицами. Устьица служат воротами газообмена между внутренней частью растений и внешней средой.

Когда устьица открываются, они пропускают СО2; однако, когда устьица открыты, они выделяют кислород и позволяют выйти водяным парам. Чтобы уменьшить потерю воды, устьица закрываются, но это означает, что растение больше не может получать CO2 для фотосинтеза. Этот компромисс между увеличением количества CO2 и потерей воды представляет собой особую проблему для растений, растущих в жарких и засушливых условиях.

Солнечные электростанции работают в

  • Оренбургской области:
    «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;
    «Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан:
    «Бурибаевская», установленной мощностью 20,0 МВт;
    «Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай:
    «Кош-Агачская», установленной мощностью 10,0 МВт;
    «Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:
    «Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:
    «АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым, независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха—Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанции

  • В Алтайском крае, 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области, 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области, 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае, 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области, 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области, 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области, 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области, 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан, 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия, 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан, 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области, 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области, 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае, 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области, 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.

Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт.
Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя — в России альтернативным источникам энергии быть и развиваться.

Световая фаза фотосинтеза

Чтобы лучше понять, что происходит во время фотосинтеза, разберём фазы фотосинтеза. Световая фаза фотосинтеза включает в себя фотохимические и фотофизические процессы, и может быть поделена на три этапа:

  1. Фаза поглощения — энергия света улавливается при помощи светособирающих комплексов, переходит в энергию электронного возбуждения пигментов, передаётся в реакционный центр фотосистем I и II. 
  2. Фаза реакционных центров — энергия электронного возбуждения пигментов светособирающих комплексов используется для активации реакционных центров фотосистем. В реакционном центре электрон от возбуждённого хлорофилла передаётся другим компонентам электрон-транспортной цепи, пигмент после отдачи электрона переходит в окисленное состояние и становится способным, в свою очередь, отнимать электроны у других веществ. Именно в этом процессе происходит преобразование физической формы энергии в химическую.
  3. Фаза электрон-транспортной цепи — электроны переносятся по цепи переносчиков, образуются АТФ, НАДФН, O2. Необходимо, чтобы каждый переносчик электрон-транспортной цепи поочерёдно восстанавливался и окислялся, обеспечивая таким образом перенос энергии электронов. Любой этап переноса электрона сопровождается высвобождением или поглощением энергии. Часть энергии теряется. На некоторых участках электрон-транспортной цепи перенос электрона сопряжён с переносом протона.

Для того чтобы понять, что происходит во время фазы фотосинтеза, рассмотрим эти процессы подробнее. Кванты света улавливаются светособирающими комплексами фотосистемы I — молекула хлорофилла в составе светособирающего комплекса переходит в возбуждённое состояние, и энергия передаётся в реакционный центр фотосистемы I. Происходит возбуждение молекул хлорофилла фотосистемы I,   отщепляется электрон. Пройдя по цепочке внутренних компонентов фотосистемы I и внешних переносчиков, электрон в конце концов попадает к НАДФ+ — образуется восстановитель НАДФН. Получается, что хлорофилл фотосистемы I отдал электрон и приобрёл положительный заряд, и для дальнейшего функционирования необходимо восстановить нейтральность молекулы, получить электрон, чтобы закрыть «дырку». Этот электрон приходит от фотосистемы II.

На светособирающие комплексы фотосистемы II попадают кванты света — происходит возбуждение молекулы хлорофилла фотосистемы II, молекула хлорофилла отдаёт электрон и переходит в окисленное состояние. Нехватку электрона хлорофилл восполняет благодаря фотолизу воды, при этом образуется протоны H+, а также важный побочный продукт фотосинтеза — кислород. По цепи переносчиков электрон от хлорофилла фотосистемы II попадает к хлорофиллу реакционного центра фотосистемы I и восстанавливает его. Теперь этот хлорофилл может снова поглощать энергию кванта света и отдавать электрон в электрон-транспортную цепь.

Протоны, попадающие во внутритилакоидное пространство, используются для синтеза АТФ. С помощью фермента АТФ-синтазы за счёт градиента протонов образуется АТФ из АДФ и фосфата. Под градиентом понимают неравномерное распределение: во внутритилакоидном пространстве H+ больше, в строме — меньше. Поэтому частицы стремятся проникнуть в строму, переходят в неё через АТФ-синтазу, а в процессе пути сквозь белковый комплекс отдают ему часть энергии, которая и используется для синтеза АТФ. 

Значение фотосинтеза для растений

— Фотосинтез обеспечивает пищу для растений. Процесс фотосинтеза происходит в зеленых растениях, которые являются основными производителями в пищевой цепи.

— Фотосинтез необходим для поддержания жизни. Это основной источник кислорода и энергии для всех живых организмов.

— Фотосинтез помогает в росте и развитии растений.

— Он превращает атмосферный углекислый газ (выделяемый при дыхании и других видах деятельности) обратно в кислород.

— В процессе фотосинтеза образовавшиеся углеводы, используются для создания клеточных структур — клеточных стенок целлюлозы.

Деревья и другие зеленые растения практикуют дыхание также как животные, но они также практикуют фотосинтез. Вот почему экологи классифицируют зеленые растения как «производителей», а большинство других форм жизни — как «потребителей». Речь идет об энергии. Хорошо, есть и разложители, но это уже другая история, и они все еще зависят от энергии, получаемой производителями.

Деревья часто считаются главным генератором кислорода для планеты, но это не совсем верно. Большая часть планеты покрыта водой, и коллективный фотосинтез низших водорослей является настоящей кислородной машиной.

Тем не менее, деревья и леса действительно являются значительными производителями кислорода. Однако, если бы кислород был единственным преимуществом деревьев и лесов, мы могли бы легко жить без них. А некоторые леса на самом деле производят больше углекислого газа, чем кислорода. К счастью, преимущества как деревьев, так и лесов простираются далеко за пределы чего-то такого узкого, как производство кислорода.

Фотосинтез важен для живых организмов, потому что это источник кислорода номер один в атмосфере. Без фотосинтеза углеродный цикл не состоялся бы, жизнь, требующая кислорода, не выжила бы, и растения погибли бы. Зеленые растения и деревья используют фотосинтез для производства пищи из солнечного света, углекислого газа и воды в атмосфере: это их основной источник энергии

Важность фотосинтеза в нашей жизни — это кислород, который он производит. Без фотосинтеза на планете практически не было бы кислорода

Биохимия фотосинтеза

Высшие растения, бактерии и водоросли преобразуют солнечную энергию в углеводы и углеводороды. Но растения не подходят для крупномасштабного производства топлива на основе солнечной энергии, так как задействуют сложную цепочку биохимических реакций, позволяющих преобразовать CO2 в конечный продукт. КПД растений слишком низок, чтобы они могли играть роль серьезного энергетического ресурса. Эффективность растений обычно зависит не только от освещенности, но и от других экологических факторов, в том числе, от доступности  CO2, воды и питательных веществ.

Фотосинтез протекает в четыре этапа:

 Сбор света. На данном этапе происходит поглощение и накопление электромагнитного излучения  антенными молекулами (прежде всего хлорофиллом, но также и каротином). Эти молекулы сосредоточены в виде белковых комплексов или органелл и служат для концентрации захваченной энергии в «реакционных центрах».

Разделение зарядов. В реакционном центре (так называемой фотосистеме — II) происходит разделение зарядов: молекула хлорофилла испускает электрон (отрицательно заряженную частицу), на месте электрона остается положительно заряженная «дырка». Таким образом, энергия солнечного света применяется для разграничения положительных и отрицательных зарядов.

Расщепление воды. На третьем этапе собирается множество положительных зарядов, которые идут на расщепление молекул воды: получаются ионы водорода и кислород. Расщепление воды происходит в отдельном отсеке клетки, а не там, где проходит этап разделения зарядов; на достаточном удалении, чтобы предотвратить потерю заряда при поступлении нового фотона, но достаточно близко, чтобы положительный заряд эффективно накапливался и затем использовался для катализа.

Синтез топлива. Электроны, полученные при разделении зарядов, подхватываются цитохромом  b6f и маленькими мобильными переносчиками и транспортируются в еще один белковый комплекс, фотосистему I. В фотосистему I поступает дополнительная энергия, которую также приносят солнечные фотоны, и с ними также идет химическая реакция, в результате которой получаются углеводороды.

Немного простой химии.

Расщепление воды на кислород и водород:

Образовавшиеся протоны идут на синтез углеводов.

Реакция фотосинтеза в общем виде

Итак, для организации и последующей оптимизации фотосинтеза нам нужно превратить двухступенчатую реакцию в одноступенчатую, а также избавиться от выращивания листьев.

Историческая перспектива

Ранее считалось, что растения получают пищу благодаря гумусу, присутствующему в почве, аналогично питанию животных. Эти мысли исходили от древних философов, таких как Эмпедокл и Аристотель. Они предположили, что корни ведут себя как пуповины или «рты», питающие растение.

Это видение постепенно менялось благодаря кропотливой работе десятков исследователей между семнадцатым и девятнадцатым веками, которые раскрыли основы фотосинтеза.

Наблюдения за фотосинтетическим процессом начались около 200 лет назад, когда Джозеф Пристли пришел к выводу, что фотосинтез является обратным клеточному дыханию. Этот исследователь обнаружил, что весь кислород, присутствующий в атмосфере, вырабатывается растениями в процессе фотосинтеза.

Впоследствии стали появляться убедительные доказательства того, что для эффективного протекания этого процесса необходимы вода, углекислый газ и солнечный свет.

В начале 19 века молекула хлорофилла была впервые выделена, и стало возможным понять, как фотосинтез приводит к хранению химической энергии.

Благодаря применению новаторских подходов, таких как стехиометрия газообмена, удалось идентифицировать крахмал как продукт фотосинтеза. Более того, фотосинтез был одной из первых тем в биологии, изучаемых с помощью стабильных изотопов.

Преимущества и недостатки использования солнечной энергии

Преимущества использования солнечной энергии привели к тому, что уже сегодня мы видим ее использование в самых разных видах человеческой деятельности.

Главными преимуществами являются:

  • Неисчерпаемость энергии солнца в ближайшие 4 миллиарда лет;
  • Доступность данного вида энергии – именно с ним безопасно и эффективно сегодня работают и фермеры, и хозяева частных домов, и заводы-гиганты;
  • Бесплатность и экологическая чистота вырабатываемой энергии;
  • Перспектива развития данного источника энергии, который становится все более актуальным в силу роста цен на другие виды энергии;
  • Т.к. количество ежегодно вводимого в эксплуатацию оборудования и его надежность растет, уменьшается стоимость вырабатываемого киловатт часа солнечной энергии.

К условным недостаткам солнечной энергии можно отнести:

  • Основным недостатком солнечной энергии является прямая зависимость количества получаемого света и тепла от влияния таких факторов, как погода, время года или же суток. Логическим последствием в таком случае является необходимость аккумулировать энергию, что увеличивает стоимость системы;
  • Для производства элементов оборудования данного предназначения применяются редкие а, следовательно, дорогостоящие элементы.
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Раздольная энергия
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: