Свойства литиевых батареек при разных анодных парах
В зависимости от материала используемого при изготовлении катода технические характеристики литиевых батареек могут изменяться по основным параметрам. Выделяют 7 основных анодных пар:
- Li/MnO2— электролитом является соединение хлора с литием. Постоянное напряжение до 3 В, потеря заряда в течение года составляет 2,5%. Сроком годности устанавливается значение до 10 лет. Выполняется в виде таблетки и имеет маркировку «CR». Диапазон рабочих температур от -20°С до +55°С.
- Li/CuO- соединение меди позволяет сохранять больше заряда в течение срока службы. Номинальное напряжение имеет значение 1,2-1,5 В. Диапазон рабочих температур от -10°С до +70°С. Элемент питания с данной анодной парой может имеет срок годности до 10 лет.
- Li/SO2— в качестве электролита применяется диоксид серы, в котором содержатся элементы для повышения проводимости. Катод выполняется из прессованного графита с сажей. Данное исполнение является наиболее распространенным. Номинальное напряжение, вырабатываемое при реакции, составляет 2,6 В- 2,8 В. При эксплуатации возможно возникновение короткого замыкания для этого в конструкции установлен предохранитель давления. Батарейка способна работать при диапазоне температур от -60°С до +70°С, способна сохранять работоспособность в течение 10 лет.
- Li/I2— в данных элементах не применяется электролит, химическая реакция происходит при смешивании твердых материалов. Считаются самыми надежными, используются для питания в медицинских аппаратах, где необходим постоянное значение напряжения на длительный срок. Рассчитана на 15 лет работы.
- Li/FeS2— имеют завышенную стоимость, что не делает их менее распространенными. Среди потребителей считаются лучшими. Применяются в устройствах с повышенной мощностью, в конструкции есть предохранитель давления и клапан сброса, а также защита при резком увеличении значения тока. Срабатывает предохранитель при температуре от 80 °С. Изготавливаются цилиндрической формы, имеют срок службы до 10 лет.
- Li/CFx— элемент питания работает при повышенных значениях температуры до +85°С. Применяется в медицинской технике, имеет саморазряд до 20% в течение 10 лет.
- Li/SOCl2— отличается от остальных повышенной емкостью. Номинальное рабочее напряжение составляет значение без подачи нагрузки до 3,8 В, а при нагрузке 3,5В. Электролитом является химическое соединение на основе хлора, считается агрессивным. При падении рабочей температуры ниже нуля емкость начинает падать, и наоборот при повышении значение незначительно увеличивается. Максимальная температуры работоспособности +130°С. В конструкции имеется защита в виде плавкой вставки, а также клапан увеличенного давления.
Устройство тяговых батарей
Хочется начать с того что, устройство очень схожее с обычными стартерными АКБ, но есть и отличия.
Схожесть:
- Также есть плюсовые и минусовые пластины.
- Также заливаются электролитом.
- Все это хранится в пластиковых корпусах.
Отличия:
- Пластины здесь просто огромные (если хотите — толстые), зачастую используется много свинца или других металлов (про это ниже). Как мы помним у обычных стартерных аккумуляторов пластины очень тонкие и компактные, находятся просто впритык друг к другу, что позволяет накопить много энергии – выдавая сильные пусковые токи. У тяговых такой задачи нет! Поэтому и пластины здесь намного толще и массивнее, это позволяет работать дольше и не осыпаться (разрушаться), поэтому 1 тяговый аккумулятор с напряжением в 2Вольта и емкостью 75Ампер, может быть в 3 – 4 раза больше, чем стартерный 12Вольт 60Ампер.
- Электролит здесь обычный, назовем его – автомобильным, плотностью в 1,27г/см3
- Корпуса схожие по строению со стартерными, однако, намного толще, чтобы выдержать большой вес пластин.
Знаете, когда я первый раз увидел тяговый аккумулятор, я подумал что дам должно быть примерно 100 – 150Ампер при напряжении в 12Вольт, а это оказалось всего 1 банка, с напряжением в 2Вольта и 50Ампер! Просто огромная.
Если говорить про различные технологии — существует всего два типа тяговых батарей – кислотные и щелочные.
- Кислотные – основанные на свинце и электролите на серной кислоте, про которые я рассказал сверху.
- Щелочные – основанные на никель-железных пластинах, которые залиты специальным раствором щелочи. Очень надежные — не бояться морозов и глубоких разрядов, можно хранить как заряженными так и разряженными. Однако минусы более существенные – цена в два – три раза больше чем свинцовые, при зарядке выделяется едкий пар, зарядные станции специальные (стоят дорого), при заряде требуют больше энергии.
Как становится понятно из-за таких проблем щелочные не получили большого распространения, хотя в СССР они пользовались большим спросом.
Сейчас кстати появляются тяговые АКБ, основанные на новых технологиях это AGM и GEL, как собственно и в автомобилях. Они компактные и выдают больше энергии, правда стоимость их иногда просто зашкаливает.
Общие рекомендации по конструированию самодельных нагрузочных вилок
Перед тем как начать собирать вилку самостоятельно, не забудьте измерить показатели напряжения в каждой банке аккумуляторной батареи и проверьте возможность доступа к банкам
Также не помешает заново прочесть инструкцию, прилагаемую к вашей батарее: в ней содержатся минимальные и максимально возможные для нее показатели тока под нагрузкой, что очень важно
Зажимы, употребляемые при замерах, должны быть прочными, чтобы они могли выдержать большой ток, когда на батарею пойдет нагрузка. Лучше присоединять «крокодилы» к аккумулятору с помощью крепких проводов.
Все соединительные части электрической цепи должны быть крепко спаяны. Для этого вам понадобится хороший сварочный аппарат.
Для удобства применения всю цепь рекомендуется размещать на заранее подготовленном каркасе. Материалы каркаса следует изготавливать из металла, устойчивого к возгоранию.
И еще несколько важных советов:
- правильно рассчитывайте мощность во избежание перегрева;
- не присоединяйте самодельное устройство к АКБ во время ее зарядки;
- не храните самодельную вилку вблизи от аккумуляторов;
- проветривайте помещение до и после работы с вашим устройством;
- не держите вилку дольше, чем 3-5 секунд, во избежание порчи аккумулятора.
Как видите, нагрузочная вилка для аккумулятора своими руками изготавливается несложно
Важно вспомнить из школьного курса физики о том, как правильно рассчитывать показатели сопротивления, и правильно собрать электрическую цепь из подходящих подручных средств. Также при использовании самодельной нагрузочной вилки не переборщите с током и внимательно следите за его показателями
Детали умножителя
Сложно назвать конкретные типы и номиналы деталей не зная требуемых параметров умножителя, поэтому рассмотрю детали для умножителя со средними показателями, питающегося от сети переменного тока 220В.
Конденсаторы лучше всего брать с минимальным током утечки, например серии К73. Рабочее напряжение конденсаторов должно быть для Uвх=220В: С1 — не ниже 300В, С2-Сn — не ниже 600В. Ёмкость конденсаторов порядка 0,1 — 1 мкФ.
Диоды можно взять, например, КД411 или КД226Г(Д,Е). Ток нагрузки в этом случае может быть до 1А.
Будьте крайне осторожны при эксплуатации данной схемы, опасное напряжение остаётся на конденсаторах даже после отключения умножителя от источника питания.
Войти на сайт
Знаете ли вы чем отличается постоянный ток от переменного?
Вспоминается забавный случай из студенчества: как то один студент с жаром доказывал мне что в розетке ток- постоянный (он же там все время есть!), а в батарейке- переменный (батарейка села- тока нет, значит он переменный) …
Конечно же это не так. Переменный ток назван так потому, что он периодически (регулярно) изменяет свое значение- от максимального до минимального или как еще говорят- изменяется по синусоидальному закону . Если представить переменный ток в виде графика- то это будет синусоида.
Причем меняет переменный ток не только свое значение (силу) но и направление.
Если выразиться образно- это как иголка у швейной машинки двигается вверх-вниз с частотой 50 раз в секунду, так и переменный ток 220 вольт в квартирной розетке- изменяется с частотой 50 Герц или 50 раз в секунду.
Частота изменения переменного тока 50 Герц строго регламентирована и четко поддерживается на электростанциях специальной релейной защитой.
Уменьшение частоты влечет за собой серьезную аварийную ситуацию вплоть до развала энергосистемы!
Уменьшение частоты провоцирует слишком большая нагрузка (перегруз) генераторов электростанций, поэтому в таких случаях автоматика начинает отключать постепенно нагрузку до тех пор, пока частота не восстановится до номинальной.
За это отвечает автоматика АЧР- автоматическая частотная разгрузка.
Вот вкратце и все по переменому току.
Переходим к постоянному. Постоянный ток- он и в Африке постоянный . Он постоянен и по времени и по значению. Если в аккумуляторе напряжение 12 Вольт- то в любой момент времени это значение не меняется и составляет 12 Вольт.
Если представлять постоянный ток в виде графика- то это будет прямая горизонтальная линия.
Постоянный ток широко используется в технике: подавляющее большинство электронных схем в качестве питания используют постоянный ток. Переменный ток используется преимущественно для более удобной передачи от генератора до потребителя. Иногда в некоторых устройствах постоянный ток преобразуют в переменный ток преобразователями (инверторами)
Простейшим источником постоянного тока является химический источник (гальванический элемент или аккумулятор), поскольку полярность такого источника не может самопроизвольно измениться. Для получения постоянного тока используют также электрические машины — генераторы постоянного тока. В электронной аппаратуре, питающейся от сети переменного тока, для получения постоянного тока используют выпрямитель.
Уроки электрика!
Технические характеристики
На практике умножитель имеет ряд недостатков. Если в умножитель добавляется слишком много секций, напряжение в последних секциях будет ниже ожидаемого, в основном из-за ненулевого импеданса конденсаторов в нижних секциях. Практически невозможно питание умножителя непосредственно напряжением промышленной частоты, так как в этом случае требуются конденсаторы большой ёмкости, что сильно ухудшает массогабаритные показатели устройства. Пульсации выпрямленного тока также усиливаются, что в некоторых случаях неприемлемо. Обычно на вход напряжение подаётся с выхода высокочастотного высоковольтного трансформатора и повышается до нужной величины в умножителе.
Существуют умножители на напряжения от нескольких сотен вольт до нескольких миллионов вольт.
Однополупериодный умножитель
На рис.1 приведена схема однополупериодного последовательного умножителя.
В течение отрицательного полупериода напряжения происходит зарядка конденсатора через диод , который открыт. Конденсатор заряжается до амплитудной величины приложенного напряжения . В течение положительного полупериода заряжается конденсатор через диод до разности потенциалов . Далее в отрицательный полупериод конденсатор заряжается через диод до разности потенциалов . В очередной положительный полупериод конденсатор заряжается до напряжения . При этом умножитель запускается за несколько периодов изменения напряжения. Напряжение на выходе постоянное и оно является суммой напряжений на конденсаторах и , которые постоянно заряжаются, то есть составляет величину, равную .
Обратное напряжение на диодах и рабочее напряжение конденсаторов в таком умножителе равно полной амплитуде входного напряжения
При практической реализации умножителя следует обращать внимание на изоляцию элементов, чтобы не допускать коронного разряда, который может вывести прибор из строя. Если необходимо изменить полярность напряжения на выходе, то меняют полярность диодов при соединении. Последовательные умножители применяют особенно часто, так как они универсальны, имеют равномерное распределение напряжения на диодах и конденсаторах
С их помощью можно реализовать большое количество ступеней умножения
Последовательные умножители применяют особенно часто, так как они универсальны, имеют равномерное распределение напряжения на диодах и конденсаторах. С их помощью можно реализовать большое количество ступеней умножения.
Применяют, также параллельные умножители напряжения. Для них необходима меньшая емкость конденсатора на одну ступень умножения. Но, их недостатком считают увеличение напряжения на конденсаторах с ростом количества ступеней умножения, что создает ограничение в их использовании до напряжения выхода около 20 кВ. На рис. 2 приведена схема однополупериодного параллельного умножителя напряжения.
Для того чтобы рассчитать умножитель следует знать основные параметры: входное переменное напряжение, напряжение и мощность выхода, необходимые размеры (или ограничения в размерах), условия при которых умножитель будет работать. При этом следует учесть, что напряжение входа должно быть менее чем 15 кВ, частота от 5 до 100 кГц, напряжение выхода менее 150 кВ. Температурный интервал обычно составляет -55. Обычно мощность умножителя составляет до 50 Вт, но встречаются и более 200 Вт.
Для последовательного умножителя, если частота на входе в умножитель постоянна, то выходное напряжение вычисляют при помощи формулы:
где — входное напряжение; – частота напряжения на входе; N – число ступеней умножения; C – емкость конденсатора ступени; I – сила тока нагрузки.
Габариты и маркировки
Для работы различных приборов необходимо правильно подобрать элемент питания. Для этого следует знать такие параметры как диаметр, длину, значение напряжения и конструкцию исполнения. На элементах питания используется специальная маркировка, зная расшифровку можно легко найти нужную батарейку. Различают несколько видов маркировки:
- Литиевые батарейки ААА- значение напряжения составляет 1,5 В, длина 44,5 мм, диаметр 10,5 мм. Имеет народное название мизинчиковая.
- АА- номинальное рабочее напряжение составляет 1,5 В, имеет длину 50,5 мм и диаметр исполнения 14,5 мм. В быту называют пальчиковой.
- С- имеет рабочее значение напряжения 1,5 В, длину и диаметр 50 мм и 26,2 мм соответственно. Народное название дюймовочка.
- D- рабочее напряжение 1,5 В. Длина батарейки составляет 61,5 мм, а диаметр 34,2 мм. В народе называют бочка.
- РР3- имеет повышенное значение напряжения 9 В. Диаметр составляет 26,5 мм, а длина 48,5 мм. В быту называют крона.
Подбирая элемент питания необходимо учитывать требования к применению. Литиевые отличаются от алкалиновых батареек повышенной стоимостью.
Сроки службы литиевых элементов питания
При соблюдении всех требований по хранению батарейки способны прослужить более 10 лет. Часто бывает, что забытый элемент через несколько лет может отлично справляться с питанием различных приборов. Дата изготовления указывается на корпусе в виде шифра, состоящего из букв и цифр. Срок хранения литиевых батареек указан на упаковке, даже, если она не применялась. Маркировку контролирует всемирная электротехническая комиссия.
Как подобрать аккумулятор подходящей мощности
Изначально это делается в условиях завода теми, кто разрабатывает пусковую систему конкретного мотора для конкретной модели транспортного средства. Делая расчеты, отталкиваются от зарядных параметров АКБ при 75% зарядки, причем с третьей попытки стартерного разряда. Разработчики автомобилей задают следующие условия температуры:
- для бензиновых моторов, или работающих на товарных маслах, температура -20° C;
- для дизельных это диапазон от -15° до -17° C.
Дизеля сложнее заводятся в условиях мороза, поэтому применяются различные присадки или технические средства, ускоряющие запуск. Впрочем, актуальны они и для карбюраторных двигателей автомобилей, эксплуатируемых в суровом климате. Определив мощность и пусковой ток батареи, ее тестируют в лаборатории, а затем вписывают в технический паспорт машины как рекомендуемую. И если «родной» аккумулятор со временем выходит из строя, владелец самостоятельно меняет его на новый, ориентируясь на указанные параметры.
Во многом возможности АКБ определяются ее емкостью. От этого значения зависит время работы батареи на одном заряде. Какие факторы надо учесть, чтобы подобрать нужную энергоемкость:
Критерии выбора автомобильного аккумулятора.
- габариты транспортного средства;
- тип двигателя;
- климатические условия, в которых эксплуатируется автомобиль.
Каждый параметр батареи взаимосвязан, при этом базовая емкость АКБ обычно в пределах 40 – 50 А*ч. Далее порядок таков:
- +20% если машина грузовая или коммерческая;
- +20% если она эксплуатируется в условиях мороза;
- -10% если двигатель малолитражный;
- +15 если мотор высокомощный.
Второе, не менее важное значение при подборе автомобильного аккумулятора – пусковой ток. От него зависит корректная и безопасная работа стартера, преимущественно в условиях мороза
Выше ток холодной прокрутки – стартер быстрее запустит двигатель.
Подбирая АКБ, учитывают все параметры электрической цепи, включая совместимость источника питания с генератором. Основной критерий – двигатель: объем, сколько подключено оборудования, которое в сумме определяет силу прокрутки стартера. Другой момент – генератор, загруженный энергопотребителями, в любом случае должен подзаряжать аккумулятор.
Емкость и пусковой ток, конечно, главенствующие факторы, но надо понимать, что источники питания постоянно модернизируются, изготавливаются с применением разных технологий, имеющих характерные плюсы и минусы. Так, есть несколько типов батарей: сурьмянистые, кальциевые, EFB, гибридные, гелевые, AGM и другие. Также АКБ различаются по типу клемм, и здесь необходимо отталкиваться от того, в какой стране собрана машина (Америка, Азия, Европа).
Мощность аккумулятора, определяемая временем стартерного разряда, влияет на количество возможностей полноценного пуска мотора. В теплую погоду двигатель заводится легко, а вот зимой могут возникнуть сложности. Как итог – чем выше мощность и энергоемкость источника питания, тем больше шансов у водителя завести машину.
Перевод в ватт-часы [ править | править код ]
Часто производители аккумуляторов указывают в технических характеристиках только запасаемый заряд в мА·ч (mAh), другие — только запасаемую энергию в Вт·ч (Wh). Обе характеристики можно называть термином «ёмкость» (не путать с электрической ёмкостью как мерой способности проводника накапливать заряд, измеряемой в фарадах). Вычислить запасаемую энергию по запасаемому заряду в общем случае непросто: требуется интегрирование мгновенной мощности, выдаваемой аккумулятором за всё время его разряда. Если большая точность не нужна, то вместо интегрирования можно воспользоваться средними значениями напряжения и потребляемого тока, для этого используя формулу, следующую из того, что 1 Вт = 1 В · 1 А :
1 Вт·ч = 1 В · 1 А·ч.
То есть запасаемая энергия (в ватт-часах) приблизительно равна произведению запасаемого заряда (в ампер-часах) на среднее напряжение (в вольтах):
а в джоулях она будет в 3600 раз больше,
Пример
В технической спецификации устройства указано, что «ёмкость» (запасаемый заряд) аккумулятора равна 56 А·ч , рабочее напряжение равно 15 В . Тогда «ёмкость» (запасаемая энергия) равна 56 А·ч · 15 В = 840 Вт·ч = 840 Вт · 3600 с = 3,024 МДж .
При последовательном соединении одинаковых аккумуляторов «ёмкость» в мА·ч остаётся прежней, но меняется общее напряжение аккумуляторной батареи, при параллельном же соединении «ёмкость» в мА·ч — складывается, но общее напряжение не меняется. При этом «ёмкость» в Вт·ч., у таких аккумуляторных батарей, следует считать одинаковой. Например, для двух аккумуляторов, каждый из которых обладает напряжением 3,3 В и запасаемым зарядом 1000 мА·ч, последовательное соединение создаст источник питания с напряжением 6,6 В и запасаемым зарядом 1000 мА·ч , параллельное соединение — источник с напряжением 3,3 В и запасаемым зарядом 2000 мА·ч . Ёмкость же в Ватт·час (способность проделать работу) в обоих случаях, без учёта некоторых нюансов, будет одинаковой. В современных Power Bank-ах, получивших распространение в последнее время, часто аккумуляторы внутри соединены последовательно, а общую «ёмкость» в мА·ч складывают. Это происходит из-за того что такие Power Bank имеют внутренний контроллер, который преобразует напряжение и на выходе предлагает несколько значений напряжений: 5 вольт (USB порт), 12, 15, 17 или 19 вольт для подключения ноутбуков. То есть, нет возможности указать при каком напряжении уместна та или иная «ёмкость» в мА·ч, так как она меняется в зависимости от напряжения, используемого потребителем, подключенного к такому универсальному Power Bank. Поэтому в характеристиках пишут «коммерческую» ёмкость в мА·ч, полученную как сумму последовательно соединённых аккумуляторных элементов, не указывая, при этом, напряжение при котором эта «ёмкость» в мА·ч. уместа. Также следует учитывать, что ёмкость аккумулятора и его напряжение взаимосвязанные величины, так как аккумулятор, который разряжен, теряет напряжение. Причём, измерение напряжения разряженного аккумулятора или батареи без нагрузки, может не выявить степень разряженности источника питания, так как на «холостом ходу», без нагрузки, аккумуляторная батарея способна показать высокое напряжение, которое резко упадёт, в случае если аккумулятор или батарея разряжены и если к ним подключили определённую нагрузку, в отличие от заряженных источников питания, которые сохраняют высокое значение напряжения, даже после подключения нагрузки. У разряженных аккумуляторов падение напряжения, при подключении нагрузки, происходит сильнее, чем у заряженных источников питания. Для проверки автомобильных аккумуляторов часто используют специальные «пробники», создающую стандартную нагрузку на аккумулятор.
Если посмотреть на пальчиковый аккумулятор, батарею ноутбука или телефона, можно заметить надпись, к примеру, 2000 mAh. Многие знают об этом обозначении лишь поверхностно, связывая цифры с зарядом батареи, то есть считают: чем цифра больше – тем дольше устройство работает. Но все не совсем так.
Маркировка
Все виды батареек классифицируются, согласно стандартам: общеизвестными являются американские. В России обозначения разработал ГОСТ, но в обиходе они используются редко.
В зависимости от материалов изготовления элементов питания, применяется маркировка:
- R— солевая;
- LR — щелочная;
- SR — серебряная;
- CR — литиевая.
По буквенным обозначениям можно определить к какому классу относится изделие. Например, батарейка CR123а является литиевой. На изделиях этого вида может также стоять обозначение «Lithium». На щелочных элементах указывается надпись « ALKALINE».
На фото представлены различные типоразмеры щелочных батареек и Крона.
Согласно утвержденной системе обозначений, на корпусе изделия должны присутствовать характеристики энергоемкости, состава, размера, вида, напряжения.
Информация на фото свидетельствует, что батарейка щелочная (LR), ее емкость составляет 15 Ач, размер (size) — АА(пальчиковая), напряжение — 1,5 Вольта.
Как долго работает батарея 20000 mAh
К примеру, обычная ситуация: потерялось (сломалось) «родное» зарядное устройство к гаджету. В пользование дали другое, на выходе которого указано «800 mA», но теперь непонятно, сколько его заряжать. На батарее телефона указано: 2500 мА, и есть непонятная надпись: Standart charge 18 hr at 200 mA. Как во всем этом разобраться? Опять же расчеты: батарея способна накопить энергию тока 1500 мА, который выдается теоретически в течение часа до полного разряда.
Надпись на АКБ обозначает, что его следует заряжать током 200 мА в течение 18 часов, а зарядное устройство может выдать ток в 800 мА. Остается только высчитать часы: зарядный ток в 4 раз больше (800 mA разделить на 200 мА), значит, времени понадобится для заряда батареи в 4 раза меньше. Таким образом, аккумулятор данным зарядным устройством будет заряжаться 4.5 часа (10 часов разделить на 4 часа).
В идеале стоит покупать внешние батареи с выдающей силой тока от 2А, т. к. сила тока на выходе влияет на то, как быстро зарядится гаджет.
К примеру, если внешнее зарядное устройство имеет емкость 20000 мАч, его хватит на 17 полных зарядов смартфона, но, опять же, все зависит от «родного» аккумулятора.
Технические особенности
При выборе батареек важно учитывать их технические параметры. К основным относятся:
К основным относятся:
- Напряжение — показатель варьируется, в зависимости от вида батареек. Для большинства элементов питания он составляет 1,5v, для литиевых характерен вольтаж 3 V. Повышенной мощностью обладают батарейки Крона с напряжением 9V. Также высокий показатель имеют аккумуляторы, например, 26650 с вольтажом 3,7 V и так далее.
- Саморазряд — определяет потерю емкости за время хранения. В зависимости от этого показателя, на батарейки устанавливают срок годности. Наименьший период характерен для солевых изделий (2 года), наибольший — для литиевых (до 12 лет). Щелочные хранятся до 5, ртутные — до 10 лет. Перепады температур провоцируют саморазряд.
- Емкость — параметр определяет, сколько электричества в батарейке. Срок службы изделия зависит от данной характеристики. Наименьшая емкость у популярных солевых и щелочных батареек (600 мАч). Самый высокий показатель отмечается у изделий типа D(15000-18000 мАч).
Параметры емкости и напряжения для различных типов батареек представлены в таблице.
Принцип работы
Для того чтобы представить себе как работает умножитель напряжения, рассматривается простейшая схема однополупериодного устройства, показанного на рисунке. Когда начинает действовать отрицательный полупериод напряжения, диод Д1 открывается и через него осуществляется зарядка конденсатора С1. Заряд должен сравняться с амплитудным значением подаваемого напряжения.
При наступлении периода с положительной волной происходит зарядка следующего конденсатора С2 через диод Д2. В этом случае заряд приобретает высокие удвоенные значения по сравнению с поданным напряжением. Далее наступает отрицательный полупериод, в течение которого до удвоенного значения заряжается конденсатор С3. Таким же образом, во время дальнейшей смены полупериода, выполняется зарядка конденсатора С4, вновь с удвоенным значением.
Для того чтобы запустить устройство, требуются полные периоды напряжения в количестве нескольких циклов, создающие напряжения на диодах. Величина напряжения, получаемая на выходе, состоит из суммы напряжений конденсаторов С2 и С4, соединенных последовательно и заряжаемых постоянно. В конечном итоге, образуется величина выходного переменного напряжения, которое в 4 раза превышает значение напряжения на входе. В этом и заключается принцип работы умножителя напряжения.
Самый первый конденсатор С1, полностью заряженный, имеет постоянное значение напряжения. То есть, он выполняет функцию постоянной составляющей Ua, применяемой в расчетах. Следовательно, можно и дальше наращивать потенциал умножителя, подключая дополнительные звенья, сделанные по тому же принципу, поскольку напряжение на диодах в каждом из этих звеньев будет равно сумме входного напряжения и постоянной составляющей. За счет этого получается любой коэффициент умножения с требуемым значением. Напряжение на всех конденсаторах, кроме первого будет равным 2х Ua.
Если в умножителе используется нечетный коэффициент, для подключения нагрузки используются конденсаторы, расположенные в верхней части схемы. При четном, наоборот, задействуются нижние конденсаторы.
Особенности и назначение
В отличии от автомобильных аккумуляторов, тяговые агрегаты имеют как схожие черты, так и ряд существенных отличий. Так, тяговые АКБ представляют собой набор отдельных емкостей, каждая из которых представляет собой отдельную батарейку. В то время как стартерные АКБ состоят из ряда пластин в одном корпусе.
По способу работы тяговые аккумуляторы рассчитаны на продолжительную отдачу заряда через питание подключенной к нему токовой нагрузки, они задействованы в течении всей рабочей смены или технологической операции. В то время как автомобильные, задействованы лишь для пуска двигателя и поддержки вспомогательных электроприборов до тех пор, пока скорость движения не обеспечит штатный режим работы генератора.
Конструктивно, пластины обычной стартерной батареи тонкие, в то время, как у тяговых аккумуляторных устройств, пластины обладают значительно большей толщиной и весом. В результате, габариты последних существенно увеличиваются, повышая и вес, если сравнить их как источники тока. Но такое конструктивное отличие повышает и время окислительно-восстановительных реакций внутри емкости, что значительно увеличивает время разряда.
Тяговые не боятся циклов глубокого разряда, в отличии от автомобильных аккумуляторов. Такие режимы являются нормальным для питания электромоторов и приводов.
На практике, применение тяговых источников питания охватывает самые разнообразные сферы человеческой деятельности, которые предназначены для:
- Погрузочного транспорта – автотележек, погрузчиков, штаблеров и прочих, которые используются на складах, где применение ДВС привели бы к загазованности воздуха.
- Шахтные электрические аппараты – тягачи, комбайны, дрезины и прочие, выполняющие технологические операции в замкнутом пространстве с дефицитом свежего воздуха.
- Для солнечных электростанций, которые длительно накапливают электроэнергию в цикле зарядки, а потом аккумуляторные батареи отдают ток заряда к нагрузке.
- Бытовые устройства – широко распространенные детские электросамокаты, скутеры, электромобили, лодочные моторы.
Помимо этого их актуально использовать в сфере производства фармакологической продукции, медицины, детских смесей и т.д. Однако следует отметить, что для каждой сферы деятельности применяются аккумуляторные батареи различные по типу и виду.
Заключение
С развитием технических возможностей происходит развитие всей элементарной базы техники, включая аккумуляторные батареи. Появляются новые виды, включая экзотические, например, начинается производство полимер-углеродных гибких батарей, заменяющих традиционные ионно-литиевые. Поэтому информация описанная статьей не окончательна, она только рассказывает об основных, используемых сейчас, видах аккумуляторов.
https://www.youtube.com/watch?v=bPmPqHtMSskVideo can’t be loaded because JavaScript is disabled: Основные параметры автомобильных аккумуляторов (https://www.youtube.com/watch?v=bPmPqHtMSsk)