Ток холодной прокрутки автомобильного аккумулятора

Как рассчитать трехфазную сеть

В качестве примера можно взять некие производственные площади с установленным оборудованием и по этим исходным данным делать расчет мощности трехфазного тока.

В каждом станке используется электродвигатель. Их общая мощность Ру1 составляет 50 кВт, с учетом активной мощности. Кроме того, в помещении установлены осветительные приборы общей мощностью (Ру2) – 3 кВт. Символ Ру обозначает величину установленной суммарной мощности для конкретных групп потребителей. Работа оборудования осуществляется от трехфазной сети с 4 проводами и номинальным напряжением 380 В.

Кроме того, при расчетах учитывается коэффициент спроса Кс, действующий в режиме максимальной нагрузки. Он учитывает наивысшее количество включений потребителей данной группы. Для электродвигателей Кс1 берется с учетом величины их загруженности и составляет 0,35. Для приборов освещения Кс2 составляет 0,9. Все потребители выравниваются усредненным коэффициентом мощности cos φ = 0,75.

Расчеты начинаются с определения силовой нагрузки Р1 = 0,35 х 50 = 17,5 кВт. Далее рассчитывается осветительная нагрузка Р2 = 0,9 х 3 = 2,7 кВт. Таким образом, величина полной расчетной нагрузки составит Р = Р1 + Р2 = 17,5 + 2,7 = 20,2 кВт.

Для определения и расчета тока используется формула I = (1000 x P)/(1,73 x Uн x cos φ), в которой Р является расчетной мощностью потребителей, Uн – номинальным напряжением 380 вольт, cos φ – коэффициентом мощности.

Подставив нужные значения, находим значение силы и мощности по току: I = (1000 x 20,2)/(1,73 x 380 x 0,75) = 41 А. Полученный результат дает возможность узнать, сможет ли сеть обеспечить нормальную работу потребителей.

Пути ограничения пускового тока

Самый простой способ убрать лишний пусковой ток заключается в запуске оборудования на пониженном напряжении электродвигателя. Для этого конструкция предусматривает переключение обмотки с «треугольника» на «звезду» непосредственно в момент запуска. Когда же двигатель наберет некоторые обороты, обмотка переключается обратно на «треугольник». Всего несколько секунд требуется для погашения ненужного всплеска и переключения. В устройствах это реализуется за счет реле времени или иных приспособлений.

Если используется это решение, то пусковой момент также понижается. И здесь можно наблюдать квадратичную зависимость: когда напряжение уменьшится в 1,7 раза, то и момент снизится в 3 раза. Именно поэтому пуск на пониженном напряжении можно использовать лишь оборудования, в котором пуск возможен только с минимальной нагрузкой на валу двигателя асинхронного типа. Ярким примером может служить пуск многопильного станка.

Если же речь идет о мощных нагрузках, к примеру, присущих ленточному конвейеру, то указанный выше способ ограничения пускового тока не подходит. Лучше применять реостатный метод. Он дает возможность уменьшить пусковой ток без ущерба для крутящего момента. Именно этот способ можно назвать наиболее подходящим для асинхронных электродвигателей, снабженных фазным ротором. Тут удобно включается реостат в цепь обмотки ротора, а регулировка рабочего тока производится ступенчато, обеспечивая плавный пуск. А за счет реостата можно отрегулировать и рабочую скорость в двигателе, причем это характерно не только для момента запуска.

Самым же эффективным методом для безопасного запуска электродвигателей асинхронного типа можно смело назвать пуск через частотный преобразователь. Показатели напряжения и частоты здесь регулируются самим преобразователем в автоматическом режиме, за счет чего двигатель работает в оптимальных для себя условиях. Так удается достичь стабильности в оборотах, но полностью исключить броски тока.

Источник

Причины возникновения бросков тока при пуске асинхронных двигателей

Пуск асинхронного привода прямым включением в сеть связан с бросками тока в статорной цепи. Это общеизвестный факт. Но не все задумывались о том, в чем причина этого явления. Мы привыкли, что ток любого электродвигателя прямо пропорционален вращающему моменту на валу. А здесь, казалось бы, парадоксальная ситуация: момент двигателя при пуске ограничен, а ток может превышать номинальное значение в семь раз. Как же так получается?Все дело в физике работы асинхронной машины. Переменное электромагнитное поле статора наводит ЭДС в обмотке ротора двигателя. Величина этой ЭДС, в соответствии с законами электромагнитной индукции, зависит от скорости изменения электромагнитного поля статора, то есть от частоты вращения этого поля относительно ротора (от скольжения).Но если поле статора начинает вращаться сразу после подачи напряжения, то ротору необходимо какое-то время, для того, чтобы разогнаться. И чем мощнее и больше двигатель, тем больше времени требуется ротору для разгона – увеличенная масса способствует инерции. Величина скольжения, в свою очередь, имеет самое большое значение именно в первый момент пуска. В этот момент скольжение равно единице, ротор еще неподвижен, а поле уже вращается с максимальной скоростью. ЭДС в роторной цепи достигает максимального значения, так же как и ток ротора.Ток ротора тоже является переменным, поэтому он тоже создает свое переменное электромагнитное поле. Это поле опять же наводит ЭДС уже в статорной цепи двигателя. А под воздействием упомянутой ЭДС в статоре начинает протекать дополнительная составляющая тока, компенсирующая МДС ротора. Таким образом, ток в статоре всегда складывается из двух сонаправленных составляющих. Величина одной составляющей обусловлена собственным сопротивлением статорной обмотки. Эта составляющая имеет постоянное значение и на идеальном холостом ходу двигателя весь статорный ток сводится только к ней.А вторая составляющая статорного тока зависит от тока в роторной цепи и своего максимума достигает в первый момент пуска двигателя, уменьшаясь до нуля по мере приближения к точке идеального холостого хода. За счет второй составляющей статорный ток двигателя и достигает таких огромных значений при пуске.Остается невыясненным только один нюанс: почему большой пусковой ток асинхронного двигателя не обеспечивает столь же большого пускового момента, как это бывает у двигателей постоянного тока? Причина состоит в том, что момент двигателя создается только активной составляющей тока ротора, то есть той составляющей, которая совпадает по фазе с роторной ЭДС.А соотношение активного и реактивного тока ротора зависит, прежде всего, от частоты ЭДС, наводимой в роторной обмотке. Чем выше частота, тем более «переменным» становится ток и тем большее значение приобретает индуктивное сопротивление обмоток ротора. А чем больше индуктивное сопротивление роторных обмоток, тем более реактивным становится роторный ток.Максимальной частоты ЭДС ротора достигает именно в момент пуска, когда ротор неподвижен. В этот момент роторная ЭДС изменяется с частотой питающей сети – 50 герц. Впоследствии, когда двигатель выходит на рабочий участок характеристики, эта частота падает до нескольких герц, и индуктивное сопротивление обмоток перестает иметь значение, а ток ротора становится практически полностью активным.Да, пусковой ток в роторной цепи асинхронного двигателя велик, но это преимущественно реактивный ток, он не может обеспечить большой электромеханический момент. Активный ток достигает необходимой величины только после снижения частоты ЭДС и выхода двигателя на рабочую характеристику. С этим и связаны две проблемы пуска асинхронных двигателей: ограниченный пусковой момент и, напротив, повышенный в несколько раз пусковой статорный ток.

Максимальной частоты ЭДС ротора достигает именно в момент пуска, когда ротор неподвижен. В этот момент роторная ЭДС изменяется с частотой питающей сети – 50 герц. Впоследствии, когда двигатель выходит на рабочий участок характеристики, эта частота падает до нескольких герц, и индуктивное сопротивление обмоток перестает иметь значение, а ток ротора становится практически полностью активным.

Способы пуска асинхронных электродвигателей

Для запуска асинхронных двигателей используется разные методы. На практике наибольшее распространение получили следующие способы: Б.

  • Изменение конструкции электродвигателей (роторы с глубокими пазами, типа “двойная беличья клетка”).
  • Прямой пуск.
  • Запуск на пониженном напряжении.
  • Частотный пуск.

Двигатели специальной конструкции существенно дороже обычных электрических машин, что сильно ограничивает их применение.

Прямой запуск

Самая простая схема пуска асинхронных электрических машин с короткозамкнутым ротором – непосредственное подключение к сети. Подача напряжения на статорные обмотки осуществляется замыканием силовых контактов магнитного пускателя или контактора.

При прямом пуске электрической машины момент силы на валу значительно меньше номинального. Кроме того, запуск на полном напряжении вызывает броски тока и снижение напряжения. Прямой запуск применяется:

  • При низкой мощности электрической машины.
  • Для технологического оборудования, не нуждающегося в плавном разгоне.
  • Для механизмов с запуском без нагрузки.

Такой способ непригоден для приводов инерционного оборудования, устройств нетребовательных к величине пускового момента, при ограниченной мощности электросети.

Пуск на пониженном напряжении

Запуск асинхронных электрических машин на сниженном напряжении реализуется при помощи нескольких схем:

Переключением обмоток статора “звезда-треугольник”.
Подключением через трансформатор.
Включением в цепь обмоток статора пусковых резисторов или реакторов.

Принцип действия первой схемы основан на пуске электрической машины при подключении обмоток “звездой”. После разгона двигателя коммутационные аппараты переключают их на “треугольник”. Этим достигается 3-х кратное снижение пускового тока.

При этом пусковой момент на валу также снижается более чем на 30%. Кроме того, преждевременное переключение также вызывает скачки тока до величин, возникающих при прямом запуске. Такой способ также непригоден для инерционного оборудования и установок, запускаемых под нагрузкой.

Для устранения недостатков электродвигателей с короткозамкнутым ротором также применяют автотрансформаторные схемы пуска.

При этом устройство для преобразования напряжения включают последовательно в цепь обмоток электрической машины. Эта схема обеспечивает плавный разгон и уменьшение пускового тока. Через автотрансформаторы подключают приводы мощных установок и оборудования со значительным моментом сопротивления.

Высокая стоимость элементов схемы, скачок тока при переходе на полное напряжение ограничивают ее применение.

Широко применяются также реакторные и резистивные схемы пуска. Для снижения напряжения к обмоткам последовательно подключают резисторы или катушки, обладающие реактивным сопротивлением. Запуск осуществляется при включении в цепь последовательно включенных элементов с активным или индуктивным сопротивлением.

При разгоне двигателей реакторы и пусковые сопротивления постепенно шунтируются и выключаются из цепи. Недостатком этого метода является высокая стоимость оборудования, значительно сниженный пусковой момент.

Частотный пуск

Такой способ старта и разгона основан на зависимости момента и скорости вращения вала электродвигателя от частоты питающего напряжения на обмотках. Для изменения этой характеристики применяют частотные преобразователи. Запуск через ПЧ решает все проблемы старта и разгона асинхронного электродвигателя. Однако, эти устройства имеют высокую цену, большие габариты, а также являются источником высших гармоник.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Обозначение выводов обмоток ротора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M

Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Примечание: Контактные кольца роторов асинхронных двигателей обозначают так же, как присоединенные к ним выводы обмотки ротора, при этом расположение колец должно быть в порядке цифр, указанных в таблице, а кольцо 1 должно быть наиболее удаленным от обмотки ротора. Обозначение самих колец буквами необязательно.

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения.
А.И.Вольдек. Электрические машины. Учебник для студентов высш. техн. заведений. изд. 2-е, перераб. и доп.-Ленинград: Энергия, 1974.

Пуск с понижением напряжения

Подходит для запуска электродвигателя высокой мощности, но так же оптимален для аналогов средней, если напряжение в рабочей сети не позволяем разогнать мотор с помощью прямого пуска.

Для понижения напряжения существует три способа:

  1. Переключение намоток статора с треугольника (нормальная схема) на звезду (пусковая схема). Запуск начинается со звезды, а при достижении номинальной частоты происходит переключение на треугольник. При этом напряжение, питающее фазы статорных обмоток, падает в 1,73 раз. Это позволяет уменьшиться во столько же раз фазным токам, а линейные сокращаются втрое.
  2. Запуск с добавочным сопротивлением, приводящим к падению вольтажа на статорной обмотке (рисунок а). На момент пуска в электроцепь включают реакторы или резисторы (реактивное и активное сопротивление соответственно).
  3. Пуск с подключением через трансформатор понижающего типа с несколькими автоматически переключаемыми ступенями (рисунок б).

Главное преимущество – возможность разгона двигателя почти при том же напряжении, которое необходимо для нормальной работы. К недостаткам относится лишь падение Мп и Ммакс (максимальный момент). Эти величины прямо пропорционально зависят от напряжения: чем меньше Вольт, тем меньше моменты. Поэтому с нагрузкой мотор не запустится.

Расчет мощности двигателя формула для компрессора

Выбирая электродвигатель, наиболее подходящий для работы того или иного компрессора, необходимо учитывать продолжительный режим работы данного механизма и постоянную нагрузку. Расчет требующейся мощности двигателя Р дв осуществляется в соответствии с мощностью на валу основного механизма. В этом случае следует учитывать потери, возникающие в промежуточном звене механической передачи.

Дополнительными факторами являются мощности, назначение и характер производства, на котором будет эксплуатироваться компрессорное оборудование. Они оказывают определенное влияние, в связи с чем оборудование может потребовать незначительных, но постоянных регулировок для поддержки производительности на должном уровне.

Определить мощность двигателя можно по формуле: , в которой:

  • Q — значение производительности или подачи компрессора (м 3 /с);
  • А — работа по совершению сжатия (Дж/м 3);
  • ηк — индикаторный КПД (0,6-0,8) для учета потерь мощности при реальном сжатии воздуха;
  • ηп — механический КПД (0,9-0,95) учитывающий передачу между двигателем и компрессором;
  • к з — коэффициент запаса (1,05-1,15) для учета факторов, не поддающихся расчетам.

Работа А рассчитывается по отдельной формуле: А = (Аи + Аа)/2, где Аи и Аа представляют собой соответственно изотермическое и адиабатическое сжатие.

Значение работы, которую необходимо совершить до появления требуемого давления, можно определить с помощью таблицы:

Р 2 , 10 5 Па

А, 10 -3 Дж/м 3

Типичная работа компрессора характеризуется продолжительным режимом работы. Реверсивные электроприводы, как правило, отсутствуют, включения и выключения крайне редкие. Поэтому наиболее оптимальным вариантом, обеспечивающим нормальную работу компрессоров, будет синхронный электрический двигатель.

Как правильно сделать расчет мощности трехфазной сети

Для того, чтобы узнать мощность потребляемого электричества по напряжения и току, нужно знать сколько энергии потребляется. Для этого нужно сопоставить все используемые энерго потребители (узнать количество потребляемой энергии тем или иным предметом можно прочитав информацию на бирке, корпусе или же паспортных данных прибора).

При несимметричной нагрузке ток по всем фазам разный. Например, если с помощью трехфазной сети освещается здание, где в первому ряду горят все 12 ламп, во второму 6-ая лампа не горит, а в последнем не горит 11-ая.

Формулы для правильного исчисления полной мощности трехфазной цепи

Мощность — является физической мерой, в которой время выполнения работы равняется количеству этой работы.

P(мощь электрического тока) — единица, обозначающая скорость, с которой электрическое питание преобразуется в другие типы питания. Единицей измерения является Ватт (Вт/W).

Формула мощности для: — Постоянного тока: P = I(сила тока, А) × U(напряжение,В).Расчет тока по мощности тоже происходит по этой формуле. — Переменного тока фазной сети: P = I × U × cos(коэффициент мощности) × √3 Cos – коэффициент мощности, показывающий эффективность использования энергии, равносильно соотношению полной мощности к активной. Cos = S(полная мощность, ВА) / P(активная мощность Вт)

P (Вт) = I × U × cos Реактивная мощность (Q) — без ваттная мощность, не берет участие непосредственно в процессе, а просто возвращается назад к первоисточнику. P (ВАР) = I × U × sin Полная мощность электрического датчика (S) — величина, состоящая как с реактивной мощности, так и с активной. S (ВА) = I × U или S = √(P2 + Q2)

https://youtube.com/watch?v=8KfZhacOb9k

голоса

Рейтинг статьи

Прямой пуск

Это наиболее популярный способ включения асинхронного электрического двигателя. Требуется всего одно действие – включение мотора в электросеть на зафиксированной частоте и номинальном напряжении тока. После прямого запуска электромотор начинает набирать обороты с высокой скоростью. Главное достоинство этой схемы – выгода с экономической точки зрения. Прямой пуск можно выполнять без использования иных устройств, на установку которых нужны дополнительные средства. Есть у этого типа запуска и недостатки.

Прямой пуск подходит исключительно для маломощных моторов, т. к. их пусковые токи не настолько большие, как у более мощных собратьев (моторов, приводов и т.д.). Тем не менее, даже эти токи оказывают большую нагрузку на электрическую сеть, ведь они могут в 10 и более раз превышать номинальные, что негативно сказывается на кабелях, питающих мотор, и на электросети в целом. Высокие токи плохо влияют и на обмотку самого мотора

Устройство и принцип работы

Основные элементы асинхронной машины — это статор и ротор. Статор – это неподвижный элемент электрической машины, который состоит из сердечника с обмоткой. В статор помещается вращающийся ротор — вал, на котором расположен сердечник с короткозамкнутой (у АД с КЗ-ротором) или изолированной обмоткой (у АД с фазным ротором).

Так как магнитный поток в асинхронном двигателе переменный, сердечник статора изготавливается шихтованными, то есть он состоит из набора тонких пластин, которые изолируются друг от друга окалиной и покрываются лаком. Это нужно для снижения вихревых токов и потерь.

В сердечнике есть пазы, в которые укладывается трёхфазная обмотка. А сам сердечник запрессовывается в литую станину – корпус двигателя.

Обмотка статора – состоит из катушек, намотанных медным проводником и расположенных в статоре так, что их геометрические оси сдвинуты в пространстве друг относительно друга на 120 градусов, как и фазы в трёхфазной системе питания. Обмотки статора соединяются по схеме звезды или треугольника.

На фазном роторе размещены три изолированные обмотки, соединённые по схеме звезды. Сердечник ротора также, как и статора набирается из штампованных листов электротехнической стали. Свободные концы обмоток выведены к контактным кольцам. Для съёма тока с колец используются щётки, закреплённые на щёткодержателях.

Принцип действия асинхронного двигателя с фазным ротором такой же, как и у двигателя с — вращающееся магнитное поле статора пересекая проводники обмотки ротора индуктирует в них ЭДС. Если обмотка ротора замкнута, то ЭДС порождает электрический ток. В результате взаимодействия этого тока с магнитным полем статора возникает электромагнитный момент и ротор начинает вращаться.

Частота вращения магнитного поля или синхронная частота n1 рассчитывается по формуле:

n1=60f/p ,

где f – частота питающей сети, а p – число пар полюсов обмотки статора. У двигателя с одной парой полюсов она равна 3000 об/мин.

Частота вращения ротора n2 немного ниже, и её можно посчитать по формуле:

n2=n1*(1-S )=(f1×60/p)(1-s), где n1 – синхронная частота, S – скольжение.

Скольжение S – это величина, которая выражает разницу между частотой вращения вала и частотой вращения магнитного поля статора у асинхронного двигателя, рассчитывается по формуле:

S =((n1-n2)/n1)*100%.

Величина скольжения у разных двигателей отличается, зачастую указывается на шильдике и обычно лежит в пределах 2-8%.

Итак, частота вращения ротора любого АД определяется скольжением, частотой питающей сети и числом пар полюсов в обмотке статора.

Начнём с конца — изменить число полюсов в обмотке односкоростного двигателя в процессе работы не получится — для этого есть многоскоростные двигатели, у которых изначально обмотка рассчитана на переключения.

Для изменения частоты тока используют частотные преобразователи. Раньше они не были слишком распространены из-за высокой стоимости, но в последнее время используются всё чаще и всё в большем количестве задач.

Изменять скольжение для регулировки частоты вращения АД можно:

  1. Изменением питающего напряжения, подводимого к обмотке статора.
  2. Нарушением симметрии питающего напряжения.
  3. Изменением активного сопротивления обмотки ротора.

Величину питающего напряжения обычно изменяют с помощью регулировочных автотрансформаторов или включают реакторы в разрыв линейных проводов (последовательно с обмоткой статора), такой способ используется с асинхронными двигателями с короткозамкнутым ротором.

Изменение скольжения за счёт изменения активного сопротивления обмотки ротора возможно только на асинхронных двигателях с фазным ротором, как отмечалось выше, к кольцам ротора подключаются, через щётки, резисторы или реостат. При движении бегунка реостата изменяется его сопротивление, так как реостат подключён к обмотке ротора, то при этом изменяется активное сопротивление в цепи ротора.

При увеличении активного сопротивления обмотки ротора увеличивается скольжение, соответствующее заданному нагрузочному моменту. Говоря простым языком – при одной и той же нагрузке на двигатель, при увеличении скольжения будут уменьшаться обороты ротора. По той же причине при увеличении активного сопротивления ротора увеличивается и пусковой момент.

Зависимость скольжения от сопротивления определяется по формуле:

Предлагаю не вдаваться в подробности и не рассматривать эти вопросы глубже, чтобы не увеличивать объём статьи, а просто запомнить – чем больше активное сопротивление обмоток – тем меньше обороты ротора при той же нагрузке. Давайте перейдём к практике, а именно рассмотрим схему подключения.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Раздольная энергия
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: