Возбудители тиристорные для синхронных двигателей серии ВТЕ
НАЗНАЧЕНИЕ
Питание роторов синхронных двигателей приводов компрессоров, газо– и воздуходувок, вентиляторов, прокатных станов, насосов, шаровых мельниц и других подобных нагрузок.
ВОЗБУДИТЕЛИ ОБЕСПЕЧИВАЮТ
Система управления:
Функциональная схема возбудителя ВТ3
Система регулирования позволяет гибко подстраивать систему возбуждения к требованиям конкретного объекта, обеспечивает связь с системой верхнего уровня. Установка параметров при наладке возбудителя возможна как непосредственно с панели управления возбудителя, так и с компьютера. С помощью компьютера обеспечивается также осциллографирование процесса пуска.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Условное обозначение | Номинальный выпрямленный ток, А | Номинальное выпрямленное напряжение, В | Выпрямленное напряжение форсировки, В |
ВТ-160/36 | 160 | 36 | 68 |
ВТ-200/48 | 200 | 48 | 110 |
ВТ-250/48 | 250 | 48 | 110 |
ВТ-320/48 | 320 | 48 | 110 |
ВТ-320/75 | 320 | 75 | 155 |
ВТ-320/115 | 320 | 115 | 235 |
ВТ-320/150 | 320 | 150 | 320 |
ВТ-400/48 | 400 | 48 | 110 |
ВТ-400/75 | 400 | 75 | 155 |
ВТ-400/115 | 400 | 115 | 235 |
ВТ-400/230 | 400 | 230 | 500 |
ВТ-630/75 | 630 | 75 | 155 |
ВТ-630/115 | 630 | 115 | 235 |
ВТ-630/230 | 630 | 230 | 500 |
т., ф.
2021 РОССИЙСКАЯ ЭЛЕКТРОТЕХНИЧЕСКАЯ КОМПАНИЯ. Все права защищены.
Источник
Insulated Gate Bipolar Transistor
Заголовок этого раздела переводится как “биполярный транзистор с изолированным затвором” (англ.). Это современный прибор, появившийся примерно в конце прошлого века и сделавший революцию в силовой электронике. Электроэнергия используется человечеством уже давно, по мере развития техники одна часть возникающих проблем была успешно решена как например, отказ от дорогих магнитных сплавов в пользу дешевой стали и медных обмоток возбуждения в двигателях постоянного тока и магнитах (Вернер Сименс). Другая часть проблем долго и упорно не поддавалась решению. К ней, например, можно отнести использование переменного тока в электротранспорте.
Электротехнические устройства всегда содержат элементы коммутации и это самые больные их места. При разрыве многих электрических цепей возникает дуга, пережигающая со временем контакты. Сопротивление контактов в идеале должно быть не больше, чем самый маленький участок остальной цепи, но на практике, именно благодаря окислам от дуги, в месте контакта возникает повышенное сопротивление. По закону Джоуля-Ленца на этом сопротивлении возникает и рассеивается тепловая мощность пропорциональная сопротивлению и квадрату тока. Нагрев током места контакта приводит к его ускоренному старению, чем дальше, тем быстрее, и в результате цепь выходит из строя.
Правила и условия эксплуатации тиристорных возбудителей
Для сохранения всех свойств тиристорных возбудителей в ходе их эксплуатации следует соблюдать ряд правил, которые продиктованы ГОСТами. Требования к окружающей среде, в которой используется возбудитель:
- значение температуры окружающего воздуха – от 5 до 40 градусов,
- предельное верхнее значение температуры – 45 градусов,
- высота над уровнем моря – не более 1000 метров.
Окружающий прибор воздух не должен содержать взрывоопасных и других вредных примесей. Также воздух не должен включать в свой состав токопроводящую пыль в такой концентрации, которая снижает уровень изоляции в недопустимых нормах.
При соблюдении всех вышеперечисленных требований по эксплуатации тиристорных возбудителей приборы предоставляют возможность бесперебойного и стабильного использования на протяжении всего срока, указанного в руководстве по эксплуатации. Высокая квалификация сотрудников компании и оперативность работы службы доставки,– все это позволит значительно сократить затраты временных ресурсов. ЗАО «МГК ЭЛАРП» присутствует на рынке электротехники более двадцати лет, выступая под одним и тем же названием и постоянным регистрационным номером. За время нашей профессиональной деятельности мы наладили прочные партнерские отношения с ведущими заводами РФ. Все это позволяет нам устанавливать приемлемые конкурентоспособные цены и нести полную ответственность за качество предлагаемой продукции. Оформить заявку на приобретение тиристорных возбудителей вы можете, связавшись с представителем компании по указанным на нашем сайте контактам.
Сферы применения
Частотно-регулируемые приводы применяют:
- Для кранов и грузоподъемных машин. Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
- Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
- Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов.Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
- Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.
Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.
Режимы работы
Устройство обеспечивает три режима работы, автоматический, ручной и аварийный. Возможно изменение режимов во время функционирования двигателя. Переход от одного к другому не сопровождается бросками тока. Ниже познакомимся, как работает устройство.
Автоматический режим
Поддержание заданных параметров происходит с помощью блока координации возбуждения – АРВ. Параметры задаются с помощью кнопок на пульте или дистанционно.
АРВ поддерживает заданные параметры:
- Напряжение сети.
- Коэффициент мощности электродвигателя (cosⱷ).
- Стабильную работу двигателя при возрастании нагрузки, превышающей максимальную.
- Регулирует напряжение статора при уменьшении нагрузки меньше номинальной.
Ручной режим управления
Устройство позволяет изменять параметры в ручном режиме, заданные оператором с инженерного пульта.
В этом случае блок обеспечивает:
- Прямой запуск с автоматической подачей возбуждения на катушки синхронного двигателя, как функцией тока статора и скольжения.
- Реакторный запуск. В автоматическом режиме регулируется тока статора.
- Стабилизация тока возбуждения при резких изменениях нагрузки.
- Поддержание тока стабилизации в пределах 5% при изменении питающего напряжения на величину 70-110% от номинального. При изменениях температурного режима обмоток.
- Возможность плавной регулировки тока. В случае необходимости, который можно оперативно подстроить.
- Защита ротора от длительных перегрузок.
- Быстрое гашение поля ротора при длительном провале напряжения. При этом должен быть подан сигнал гашения.
- Увеличение напряжения на 1,75 от номинального. При нормальном напряжении сети, питающей возбудитель.
- Ограничение напряжения по минимальным значениям.
- Ограничение тока по максимальным значениям.
Аварийный режим
Предназначен для работы двигателя в аварийном режиме. Аналоговый возбудитель выполняет регулировку токов от нуля до величины форсирования. Имеется подстройка в заданных пределах.
В нем имеется модуль, защищающий цепи при:
- Коротком замыкании цепей электронного преобразователя.
- Отключение возбуждения у работающего электродвигателя.
- Продолжительного асинхронного хода.
- Возникновение пробоя изоляции на землю.
- Превышающих заданные значения перегрузок.
- Многократных запусках двигателя.
- Отказа группы контактов в модуле выключателей.
- Пониженного напряжения статора.
- Изменение направления мощности.
- Повышенного напряжения в обмотках возбуждения.
- При перегреве пускового резистора.
Электронные возбудители ориентированы для подачи напряжения в цепи обмоток возбуждения и регулирования токов возбуждения в автоматическом режиме. Применяются для синхронных электродвигателей большой мощности.
Возбудители тиристорные для синхронных двигателей серии ВТЕ
НАЗНАЧЕНИЕ
Питание роторов синхронных двигателей приводов компрессоров, газо– и воздуходувок, вентиляторов, прокатных станов, насосов, шаровых мельниц и других подобных нагрузок.
ВОЗБУДИТЕЛИ ОБЕСПЕЧИВАЮТ
Система управления:
Функциональная схема возбудителя ВТ3
Система регулирования позволяет гибко подстраивать систему возбуждения к требованиям конкретного объекта, обеспечивает связь с системой верхнего уровня. Установка параметров при наладке возбудителя возможна как непосредственно с панели управления возбудителя, так и с компьютера. С помощью компьютера обеспечивается также осциллографирование процесса пуска.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Условное обозначение | Номинальный выпрямленный ток, А | Номинальное выпрямленное напряжение, В | Выпрямленное напряжение форсировки, В |
ВТ-160/36 | 160 | 36 | 68 |
ВТ-200/48 | 200 | 48 | 110 |
ВТ-250/48 | 250 | 48 | 110 |
ВТ-320/48 | 320 | 48 | 110 |
ВТ-320/75 | 320 | 75 | 155 |
ВТ-320/115 | 320 | 115 | 235 |
ВТ-320/150 | 320 | 150 | 320 |
ВТ-400/48 | 400 | 48 | 110 |
ВТ-400/75 | 400 | 75 | 155 |
ВТ-400/115 | 400 | 115 | 235 |
ВТ-400/230 | 400 | 230 | 500 |
ВТ-630/75 | 630 | 75 | 155 |
ВТ-630/115 | 630 | 115 | 235 |
ВТ-630/230 | 630 | 230 | 500 |
т., ф.
2021 РОССИЙСКАЯ ЭЛЕКТРОТЕХНИЧЕСКАЯ КОМПАНИЯ. Все права защищены.
Источник
Системы бесщеточные диодные (СБД)
Системы бесщеточные диодные (СБД) предназначены для питания обмотки возбуждения турбогенераторов выпрямленным регулируемым током – рис.5.4а,б. Бесщеточный возбудитель представляет собой синхронный генератор обращенного исполнения, якорь которого с обмоткой переменного тока и диодным выпрямителем жестко соединен с ротором возбужденного турбогенератора. Обмотка возбуждения возбудителя расположена на его статоре.
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Это позволяет обеспечить возбуждение сверхмощных машин, токи возбуждения которых превышают 5500А, свойственных системе СТН – рис.5.2. Выпрямленное номинальное напряжение составляет до 600В, а выпрямленный номинальный ток до 7800А. Система охлаждения вращающегося диодного выпрямителя – естественная воздушная.
Регулирование возбуждения генератора осуществляется путем управления током обмотки возбуждения обращенного возбудителя. Типовой комплект системы включает в себя автомат гашения поля, тиристорный разрядник и два преобразовательно-регулирующих канала (AVR-1, AVR-2) автоматических регуляторов возбуждения основного и резервного каналов соответственно. Один из каналов (AVR-1) находится в активном режиме, другой (AVR-2) – в горячем резерве. В частном случае основной канал регулирования получает питание от выпрямительного трансформатора, подключенного к генераторному токопроводу, а резервный – через выпрямительный трансформатор от шин собственных нужд электростанции.
Рис.5.5. Система бесщеточная диодная (СБД) с тиристорным возбуждением (ТВ-1, ТВ-2) обмотки возбуждения возбудителя (ОВВ). СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель и его обмотка возбуждения ОВВ; ТВ-1, ТВ-2 – тиристорные выпрямители первого и второго канала для питания ОВВ; ВТ-1, ВТ-2 – выпрямительные трансформаторы первого и второго каналов; АРВ-1, АРВ-2 – автоматические регуляторы возбуждения первого и второго каналов; Р1, Р2, Р3, Р4 – разъединители; ТТ1, ТТ2, ТН1, ТН2 – измерительные трансформаторы тока и напряжения первого и второго каналов; ТА11, ТА12 – датчики тока возбуждения возбудителя; АГП – автомат гашения поля; ТР – тиристорный разрядник.
Рис.5.6. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный дизель-генератор; ОВГ – обмотка возбуждения; ДВ – диодный выпрямитель; Т – тиристор; АРВ – автоматический регулятор возбуждения; ИТТ, ИТН – измерительные трансформаторы тока и напряжения; ТСТ с МШ – трехобмоточный суммирующий трансформатор с магнитным шунтом.
В схеме на рис.5.4а питание обмотки возбуждения диодного возбудителя осуществляется от магнитоэлектрического подвозбудителя с постоянными магнитами, а в схеме на рис.5.4б – от выпрямительного трансформатора, подключенного у генераторному токопроводу возбужденной машины. В обоих случаях для питания обмотки возбуждения (ОВВ) обращенного возбудителя (В) используется тиристорный выпрямитель, управляемый системой АРВ.
Рис.5.7. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель; ОВВ – обмотка возбуждения возбудителя; ПВ – магнитоэлектрический подвозбудитель с постоянными магнитами; АРВ – автоматический регулятор возбуждения; ТВ – тиристорный выпрямитель для питания ОВВ.
Как один из современных вариантов схемы рис.5.4б с выпрямительным трансформатором (ВТ) на рис.5.5 представлена бесщеточная диодная система (СБД) с тиристорным питанием по двум каналам (от сети СН через ВТ-2 и от токопровода генератора через ВТ-1) обмотки возбуждения возбудителя (ОВВ).
Принцип работы
В основе работы синхронного электродвигателя лежит взаимодействие магнитного потока, генерируемого рабочими обмотками с постоянным магнитным потоком. Наиболее распространенной моделью синхронной электрической машины является вариант с рабочей обмоткой на статоре и обмоткой возбуждения на роторе.
Рис. 2. Принцип действия синхронного электродвигателя
Как видите на рисунке 2 выше, в обмотку статора подается трехфазное напряжение из сети, которое формирует переменное магнитное поле. На обмотки ротора электродвигателя подано постоянное напряжение, которое индуцирует такой же постоянный магнитный поток у полюсов. Для наглядности рассмотрим процесс на упрощенной модели синхронного агрегата (рисунок 3).
Рис. 3. Принцип формирования потоков в синхронной электрической машине
При подаче питания на фазные витки статора электродвигателя первый пик амплитуды тока и ЭДС взаимоиндукции приходиться на фазу A, затем B и фазу C.
На графике показана периодичность чередования кривых в зависимости от времени:
- в точке 1 максимальная ЭДС EA формирует максимальный поток, а электродвижущие силы фаз EB и EC равны между собой и противоположны по знаку, они дополняют результирующую силу.
- в точке 2 пика достигает ЭДС EB, а электродвижущие силы фаз EA и EC становятся равны между собой и противоположны по знаку, они дополняют результирующую силу, в результате чего магнитное поле совершает вращательное движение.
- в точке 3 максимум приходиться на ЭДС EC, а электродвижущие силы фаз EB и EA вместе дополняют результирующую силу и снова смещают вектор поля по часовой стрелке.
Оборот поля статора происходит в течении периода, а за счет того, что ротор обладает собственным электромагнитным усилием постоянным во времени, то он синхронно следует за движением переменного магнитного поля, вращаясь вокруг заданной оси. В результате такого вращения происходит синхронное движение ротора вслед за сменой амплитуды ЭДС в витках рабочих обмоток, за счет этого явления электродвигатель и получил название синхронного. Наличие отдельного питания отразилось и на схематическом обозначении таких электрических машин (рисунок 4) в соответствии с ГОСТ 2.722-68.
Рис. 4. Схематическое обозначение синхронного электродвигателя
Правила и условия эксплуатации тиристорных возбудителей
Для сохранения всех свойств тиристорных возбудителей в ходе их эксплуатации следует соблюдать ряд правил, которые продиктованы ГОСТами. Требования к окружающей среде, в которой используется возбудитель:
- значение температуры окружающего воздуха – от 5 до 40 градусов,
- предельное верхнее значение температуры – 45 градусов,
- высота над уровнем моря – не более 1000 метров.
Окружающий прибор воздух не должен содержать взрывоопасных и других вредных примесей. Также воздух не должен включать в свой состав токопроводящую пыль в такой концентрации, которая снижает уровень изоляции в недопустимых нормах.
При соблюдении всех вышеперечисленных требований по эксплуатации тиристорных возбудителей приборы предоставляют возможность бесперебойного и стабильного использования на протяжении всего срока, указанного в руководстве по эксплуатации. Высокая квалификация сотрудников компании и оперативность работы службы доставки,– все это позволит значительно сократить затраты временных ресурсов. ЗАО «МГК ЭЛАРП» присутствует на рынке электротехники более двадцати лет, выступая под одним и тем же названием и постоянным регистрационным номером. За время нашей профессиональной деятельности мы наладили прочные партнерские отношения с ведущими заводами РФ. Все это позволяет нам устанавливать приемлемые конкурентоспособные цены и нести полную ответственность за качество предлагаемой продукции. Оформить заявку на приобретение тиристорных возбудителей вы можете, связавшись с представителем компании по указанным на нашем сайте контактам.
Проверка работоспособности
Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.
Один из видов: силовой Т122-25
Прозвонка мультиметром
Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.
На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы
Далее поочередно прикасаемся щупами к парам выводов:
- При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
-
Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.
Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках
Схема проверки работоспособности тиристора мультиметром
На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между анодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.
При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)
Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:
Схема проверки тиристора при помощи лампочки и источника питания
- Плюс от источника питания подаем на анод.
- К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
- Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
- Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
- Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
- Если восстановить цепь/питание, она не загорится.
Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.
Режимы работы системы возбуждения:
Система возбуждения обеспечивает:
- Начальное возбуждение до заданной уставки от источника оперативного постоянного тока =220 В или сети собственных нужд 0,4 кВ 50Гц.
- Холостой ход генератора.
- Автоматическую подгонку напряжения генератора к напряжению сети с точностью ±0,5% для обеспечения включения в сеть методом точной синхронизации.
- Автономную и параллельную работу с энергосистемой и нагрузками и перегрузками допустимыми для генератора.
- Разгрузка генератора по реактивной мощности до величины близкой к нулю при нормальном останове агрегата.
- Быстрое гашение поля генератора путём перевода работающего тиристорного выпрямителя в режим инвертирования при штатной остановке генератора и при аварийном отключении генератора при условии исправности тиристорного выпрямителя.
- При аварийном отключении генератора гашение поля дополнительно обеспечивается принудительным вводом в цепь обмотки гасящих сопротивлений.
- Автоматический и ручной режим регулирования.
- Переход из автоматического режима в ручной и обратно осуществляется безударно.
- Переход с основного регулятора на резервный и обратно осуществляется безударно (для двухканальных систем возбуждения).
- Автоматический безударный переход с основного тиристорного преобразователя на резервный (для систем возбуждения с резервированием силовой части).
- Основным режимом работы регулятора является стабилизация напряжения статора генератора со статизмом по реактивному току.
- Форсировку возбуждения с заданной кратностью по напряжению и току при нарушениях в энергосистеме, вызывающих снижение напряжения на шинах станции.
- Ограничение форсировочного значения тока возбуждения возбудителя на заданном уровне и по длительности.
- Ограничение перегрузки по току возбуждения возбудителя.
- Ограничение минимального возбуждения по заданной диаграмме допустимых режимов.
- Выдачу оперативной и аварийной сигнализации.
- Отключение возбуждения автоматически при отключении выключателя генератора под действием защит системы возбуждения или генератора.
- Местное или дистанционное изменение уставки по напряжению в диапазоне от 80 до 110% в автоматическом режиме регулятора и от 0 до 110% в ручном режиме, относительно номинального напряжения генератора.
- Поддержка напряжения на выводах генератора с точностью не хуже ±0,5% относительно установленной статической характеристики (с заданной уставкой).
Комплект поставки:
В комплект системы возбуждения входит:
- Шкаф системы возбуждения;
- Защитное сопротивление (внутри шкафа системы возбуждения);
- Преобразовательный трансформатор;
- Комплект технической документации на русском языке: паспорт, техническое описание и инструкция по эксплуатации, комплект схем и чертежей, описание сервисного программного обеспечения (на электронном носителе);
- Электронный носитель с документацией и сервисным ПО;
- Комплект ЗИП (состав согласно техническим требованиям Заказчика).
*По требованию Заказчика комплект поставки может быть изменен. Точный комплект поставки указывается в паспорте на изделие.
Различия синхронных и асинхронных двигателей
Все электродвигатели переменного тока по принципу действия могут быть асинхронными и синхронными. В первом случае вращение ротора будет медленнее, по сравнению с магнитным полем, а во втором – вращение ротора и магнитного поля происходит с одинаковой скоростью.
В асинхронном двигателе вращающееся переменное магнитное поле создается обмотками, закрепленными на статоре. Концы этих обмоток выведены в общую клеммную коробку. Во избежание перегрева на валу двигателя устанавливается вентилятор. Ротор выполнен из металлических стержней, замкнутых с двух сторон между собой. Он представляет единое целое с валом и получил название короткозамкнутого ротора.
Вращение магнитного поля происходит под действием постоянной смены полюсов. Соответственно, в обмотках изменяется направление тока. На скорость вращения вала оказывает влияние количество полюсов магнитного поля.
Синхронный электродвигатель конструктивно отличается от асинхронных агрегатов. Здесь вращение ротора и магнитного поля происходит с одинаковой скоростью. Напряжение на ротор для зарядки обмоток подается с помощью щеток, а не индуцируется действием переменного магнитного поля. Направление тока в обмотках изменяется одновременно с направлением магнитного поля, поэтому вал синхронного двигателя всегда вращается в одну сторону.
Комплект поставки:
В комплект системы возбуждения входит:
- Шкаф системы возбуждения;
- Защитное сопротивление (внутри шкафа системы возбуждения);
- Преобразовательный трансформатор;
- Комплект технической документации на русском языке: паспорт, техническое описание и инструкция по эксплуатации, комплект схем и чертежей, описание сервисного программного обеспечения (на электронном носителе);
- Электронный носитель с документацией и сервисным ПО;
- Комплект ЗИП (состав согласно техническим требованиям Заказчика).
*По требованию Заказчика комплект поставки может быть изменен. Точный комплект поставки указывается в паспорте на изделие.