Ядерная батарейка на никеле 63 и ее характеристики
Данный атомный источник энергии, выполненный на 63 изотопе может прослужить до 50 лет. Работает она за счет бета вольтоического эффекта. Он практически похож на фото электрический эффект. В нем электронно дырочные пары в кристаллической решетке полупроводника создаются под действием быстрых электронов или бета частиц. А при фотоэлектрическом эффекте они появляются под воздействием фотонов.
Атомная батарейка на никеле 63 производится за счет процесса облучения в реакторе мишеней из никеля 62. Исследователь Гаврилов утверждает, что на это уходит около 1 года. Нужные мишени уже имеются в Железногорске.
Если сравнивать новые российские ядерные батарейки на никеле 63 с литий-ионными элементами питания, то они будут в 30 раз меньше.
Специалисты утверждают, что эти энергетические источники безопасны для человека так как выделяют слабые бета лучи. К тому же они не выходят наружу, а остаются внутри устройства.
Такой источник питания на данный момент отлично подойдет для медицинских кардиостимуляторов. Но вот о стоимости разработчики не говорят. Но можно подсчитать ее и без них. 1 грамм Ni-63 на данный момент стоит примерно 4000$. От сюда можно сделать вывод что на полноценную батарею потребуется очень много денег.
Принцип работы
На прилавках магазинов представлено множество различных видов батареек. У них есть небольшие различия, но вот работают они все по одной схеме. Если есть старая батарейка, сделайте ее разбор, и вы увидите, какова ее анатомия.
Каждая из них имеет в своем строении несколько элементов, состоящих из:
- положительного полюса – анода (цинк);
- отрицательного полюса – катода (марганец);
- электролита – сухого или жидкого.
Вот эти три компонента батарейки и определяют ее состав.
Принцип работы устройства такой: происходит поступление электрического тока с положительного заряда (анода) на отрицательный (катод)
При этом важно помнить, что необходимо присутствие нагрузки: лампочки, двигателя, диода или какого-либо иного элемента. Отсутствие нагрузки во время соединения «плюса» с «минусом» грозит коротким замыканием
Катоды выступают восстановителем. Они получают электроны от поступившего анода. Электролит представляет собой среду для передвижения ионов, образовавшихся в результате химических реакций.
В процессе эксплуатации аккумуляторов постоянно образуются определенные вещества, аноды же в ходе работы элемента приходят в негодность, разрушаются, окисляются. Таким образом источник питания садится.
Многих интересует вопрос: «А возможно ли его заряжать?» Все, что происходит в батарейках – необратимо. Поэтому гальванические элементы не заряжаются. Но с помощью достижений науки есть возможность возвратить изначальное состояние элементам. Для этого необходимо пропустить электрический ток в противоположную сторону, то есть от катода к аноду. Такие источники питания получили название аккумулятора, а сам процесс мы видим на примере обычной зарядки.
Но вот традиционные устройства с помощью этой рецептуры зарядить нельзя. Они не подходят для повторного использования, так как это чревато взрывом или течью химических элементов из корпуса.
Конструктивные особенности
Прожекторы на солнечных батареях, равно как и любой другой вид осветительных приборов, действующих на базе природного излучения, а также солнечные панели, как источник электрического тока, функционируют на основе фотоэлектрических элементов. Преобразование естественного света в электроэнергию происходит посредством p-n перехода. Величина электрических параметров (тока и напряжения) будет напрямую зависеть от интенсивности падающего на поверхность батареи излучения.
Схема работы
Именно поэтому прослеживается вполне логичная связь между размерами батареи, а также ее производительностью. Соответственно, прожекторы, работающие на солнечных тепловых батареях, позволяют освещать довольно большие территории, так как функционируют на базе мощных панелей. КПД подобных устройств зависит еще и от материала, из которого изготовлена батарея, а также от технологии ее производства.
Конструкция таких приборов состоит из следующих элементов:
- Непосредственно сама солнечная батарея, продуцирующая постоянный электрический ток;
- Аккумулятор;
- Контроллер для управления зарядом солнечной батареи;
- Инвертор, задача которого заключается в преобразовании постоянного тока в переменный эквивалент, что позволяет подключать различную технику на обслуживаемом объекте.
Особенностью источника питания данного рода является возможность подключения параллельно или последовательно. В первом случае на выходе получается большое значение напряжения, во втором – увеличивается значение тока.
Чтобы увеличить мощность такого устройства используется модульная конструкция, как, например, для обслуживания крупного объекта. При этом выполняется подключение нескольких батарей сразу. А вот прожекторы на солнечных батареях функционируют от единственного источника питания, который должен быть полноразмерным для получения на выходе большой мощности, так как такие осветительные приборы используются для обслуживания больших территорий.
Принцип действия ядерного (атомного) оружия
Термоядерные (водородные) взрывные устройства
Так АН602 (царь-бомба) имела трёхступенчатую конструкцию: ядерный заряд первой ступени (расчётный вклад в мощность взрыва — 1,5 мегатонны) запускал термоядерную реакцию во второй ступени (вклад в мощность взрыва — 50 мегатонн), а она, в свою очередь, инициировала ядерную «реакцию Джекила-Хайда» (деление ядер в блоках урана-238 под действием быстрых нейтронов, образующихся в результате реакции термоядерного синтеза) в третьей ступени (ещё 50 мегатонн мощности), так что общая расчётная мощность АН602 составляла 101,5 мегатонны
Основные технические характеристики аккумуляторов
Номинальная емкость аккумулятора
Номинальная емкость элемента – способность накапливать и отдавать электроэнергию постоянного тока, определяет время автономной работы ИБП. Емкость электрического аккумулятора показывает время питания подключенной к нему нагрузки.
Емкость всегда указывается на корпусе АКБ, а также на упаковке, ведь именно по этому критерию большинство пользователей выбирают нужную модель.
Пусковой ток
Величину, характеризующую параметр тока, протекающего в стартере автомобиля в момент пуска силового узла, принято считать пусковым током. Пусковой ток или стартерный возникает в момент, когда в замке зажигания поворачивается ключ и начинает проворачиваться стартер. Единица измерения величины – Ампер. Он же ток холодной прокрутки является показателем, как аккумулятор поведет себя в морозную погоду и сможет запустить двигатель при минусовых показателях. Определяется мощностью тока, которую батарея может выдать в течение первых 30 секунд при температуре -18°С. При высоких показателях пускового тока увеличиваются шансы завести машину при минусовой температуре.
Полярность
Порядок расположения на крышке аккумулятора присоединительных клемм, которые являются токовыводящими соединительными элементами, называется полярностью. Полюса всего два – положительный и отрицательный, вариантов расположения – прямое и обратное.
Прямая полярность – отечественная разработка. Чтобы ее определить, нужно повернуть аккумулятор таким образом, чтобы этикетка была перед глазами. При расположении плюсовой клеммы слева, а минусовой справа, можно утверждать, что акб с прямой полярностью. На иномарках устанавливаются аккумуляторные батареи обратной полярности.
Прямая, обратная полярность
Исполнение корпуса
Корпус большинства аккумуляторов состоит из ударопрочного полипропилена, который характеризуется как материал легкий, не вступающий в химическую реакцию с агрессивным электролитом АКБ. Полипропилен довольно стоек к перепадам температур, возникающих под капотом автомобиля, нагрев может достигать до +60 ̊С, а при морозах до -30°С. Корпус большинства АКБ состоит из ручки для переноса, пробок, индикатора заряда, клемм для подключения к электросети. Вес АКБ емкостью 55Ач около 16,5 кг. Традиционно появились американский, европейский, азиатский и российский типы корпусов.
Европейские корпусы и американские имеют идентичные габариты. Например, у батарей емкостью 60 Ач общая высота от 17,5 до 19 сантиметров. У азиатских этот показатель немного выше, до 22 сантиметров за счет верхнего расположения электродов
Именно поэтому важно корректно анализировать возможности посадочного места под капотом, чтобы надежно закрепить АКБ прижимной планкой и избежать замыкания при случайном касании токоотводами металлических частей кузова
У АКБ с европейским типом корпуса клеммы находятся в углублении, их верхний край не выступает над плоскостью крышки. Иногда клеммы дополнительно защищены от внешнего воздействия специальными крышечками. Азиатский тип корпуса – это коробка, на которой клеммы расположились на верхней крышке, верхний край клемм является самой высокой точкой аккумулятора. Какую клемму снимать с аккумулятора первой читайте здесь.
Российский стандарт акб
Обозначение | Описание букв |
А | АКБ имеет общую крышку для всего корпуса |
З | Корпус батареи залит и она является полностью заряженной изначально |
Э | Корпус-моноблок АКБ выполнен из эбонита |
Т | Корпус-моноблок АБК выполнен из термопластика |
М | В корпусе использованы сепараторы типа минпласта из ПВХ |
П | В конструкции использованы полиэтиленовые сепараторы-конверты |
Европейские корпусы и американские имеют идентичные габариты
Тип и размер клемм
Распространены аккумуляторы с клеммами трех разных стандартов: тип Euro – Type 1, и Asia –Type 3, «под болт» – американский стандарт. В типе Euro плюсовая клемма имеет диаметр 19,5 мм, минусовая клемма – 17,9 мм. В типе Asia клемма плюс имеет диаметр 12,7 мм, клемма минусовая – 11,1 мм. Клеммы «под болт» находятся на боковой стенке аккумулятора и сверху. Болт, соединённый с проводом, продевается в отверстие клеммы и фиксируется гайкой.
Американский стандарт
Завод по производству батареек
В России имеется 5 лучших производителей элементов питания.
Космос
Осуществляет производство источников энергии в России с 1993 года. Имеет 35 заводов как на родине, так и за рубежом. А именно есть фабрики в Китае. В торговых точках можно отыскать элементы питания от этой компании под именем «Kosmos Premium» и «Космос». Данная торговая марка широко известна и имеет своих дилеров в разных странах. Каждый год фирма делает до ста миллионов продаж своих источников питания.
На рынке данный завод батареек себя уже давно зарекомендовал с положительной стороны. Многократно компания получала разные награды за свою работу.
Фотон
Подобная компания стала заниматься источниками энергии с 2011 года и уже успела вырваться в лидеры. Успех компании обусловлен качественной продукцией. Устройство батарейки от этой компании имеет отличные характеристики.
Батареи от этой компании были протестированы и оказалось, что они работают достаточно долго и стоят дешевле, например, того же Дюрасел. Компания фотон занимается производством солевых источников питания.
Лиотех
Этот завод батареек был открыт совместно с китайцами. Он производит литий-ионные аккумуляторные элементы. Находится фабрика около города Новосибирска. Площадь производства очень громадна она занимает 4 Га.
Таким образом данный завод доказывает всем что в России может действовать большое конкурентное производство гальванических элементов. Кроме этого они улучшают устройство гальванических элементов.
Энергия
Данная компания находится в городе Елец. С ней сотрудничает Министерство обороны. И это дает повод думать, что это действительно надежный производитель. В 2011 году были запущены специальные цеха для производства литий ионных полимерных источников питания. В основном здесь идет производство пальчиковых батареек и аккумуляторов.
CCK
Данная компания работает с 1993 года и выпускает свинцовые элементы питания 4 и 5-го поколений. Кроме этого завод работает над увеличением емкости энергетических элементов и разрабатывает новые материалы. Вся продукция этой фирмы служит достаточно долго.
Аккумулятор выпущенный этой фабрикой имеет большое число циклов разряда-заряда. Это означает что подобный элемент питания будет служить достаточно долго. И не придется его менять каждые 2-3 месяца.
Типы ядерных реакторов, какие бывают
Существует несколько классификаций ядерных реакторов:
- по типу конструкции;
- по способу генерации пара;
- по размещению топлива;
- по спектру нейтронов.
По типу конструкции реакторы бывают:
- Контурные. Активная зона в таком типе реактора находится в цилиндрическом корпусе с толстыми стенками.
- Канальные. Активная зона представляет собой систему герметичных каналов, не зависящих друг от друга.
По способу генерации пара реакторы делятся на:
- водо-водяные (с внешним парогенератором), где в качестве замедлителя и теплоносителя используется обычная вода;
- кипящие, где пар генерируется в активной зоне и затем направляется в турбину.
В зависимости от того, где в реакторе находится топливо, они бывают:
- гетерогенные (топливо в активной зоне размещено блоками, заместитель находится между ними);
- гомогенные (топливо и замедлитель — это однородная смесь).
По спектру нейтронов бывают:
- на медленных нейтронах (тепловой реактор);
- на быстрых нейтронах (быстрый);
- на промежуточных нейтронах;
- реактор смешанного типа.
Также реакторные установки различаются между собой по виду топлива, теплоносителя и замедлителя.
Технология изготовления
Вначале следует спаять фотоэлементы между собой. Если вы купили элементы с металлическими выступами, то тогда можно просто спаять ушки батарей между собой. Делать это нужно очень внимательно и аккуратно. После пайки соединенные компоненты необходимо приклеить к подложке в верхней части панели. Это лучше сделать при помощи специального силиконового клея, который никак не препятствует проникновению солнечных лучей. Кроме того, он способствует нормальному теплообмену. Однако, не переусердствуйте с клеем, так как это может привести к повреждению батарей. Клеить нужно только центр клеток. Далее все элементы нужно соединить с проводом, который подается в одной из заранее предусмотренных вентиляционных отверстий. Для закрепления провода к солнечным элементам лучше использовать силиконовую замазку. Интересное: Солнечная панель своими руками.
На следующем этапе поверх панелей устанавливается оргстекло. Однако, до этого следует подключить диод Шоттки от чувствительных теплопроводящих компонентов. Этот диод послужит блокирующим устройством, которое защитит фотоэлементы при перепадах напряжения. Кроме того, диод Шоттки будет отключать питание системы при маленькой мощности электросети. Так аккумуляторы, заряжаемые от солнца, не будут разряжаться при прекращении питания. Когда диод будет подключен, можно ставить оргстекло и закреплять его винтами. Технология изготовления солнечных панелей является достаточно простой и понятной
Единственное, важно правильно соблюдать последовательность соединения, иначе вся система не будет работать
https://youtube.com/watch?v=3apKOZn-_B4
Как работает солнечная батарея
Принцип работы солнечной батареи основан на наличии полупроводника в виде двух пластин, соединенных друг с другом. Каждая пластина изготавливается из кремния с использованием дополнительных примесей. Благодаря этому пластины обладают своими уникальными свойствами. Первая из них имеет избыток валентных электронов, а вторая имеет недостаток этих электронов. Эти полупроводники получили название n и p. Если эти полупроводники соединить в единое целое, то можно получить PN-переход в месте контакта между ними. В то время, когда на батарею попадают прямые солнечные лучи, на обеих сторонах этого перехода начинают накапливаться положительные и отрицательные плавающие нагрузки. В результате генерируется напряжение и возникает магнитное поле. Если подсоединить к такому элементу провод, по нему потечет электричество.
Как подключить солнечную батарею
Как только вы изготовите солнечную панель, можно начинать заниматься ее подключением. Можно не подключать ее напрямую к сети, чтобы избежать потерь электроэнергии. То есть, желательно установить автономную систему с аккумуляторами. Они будут заряжаться от солнечных батарей каждый день и быстро разряжаться. При этом, глубина разрядки может быть довольно существенной. Поэтому, аккумуляторы могут быстро выйти из строя. Для того, чтобы этого не произошло, лучше оставить подключение к сети через гибридный батарейный инвертор. Это устройство будет отдавать фотоэлементам приоритет при распределении нагрузки. Инвертор не будет отдавать излишки электроэнергии в сеть, а будет передавать ее на аккумуляторы. Такой вариант является одним из наиболее оптимальных. Эта система состоит из гибридного инвертора, контроллера заряда солнечных панелей и аккумуляторов. Такой механизм сможет работать не только как основная, но и как резервная система электропитания.
Плюсы и минусы ядреной батарейки
Все существующие атомные батареи не оптимизированы. Это означает, что все они имеют избыточный объем бета-источника. Если толщина источника слишком велика, то электроны, образующиеся в ходе реакции, не смогут оторваться от него. Этот процесс ученые называют самопоглощением.
Если изготавливать батареи со слишком тонким источником, то сократится число бета-распадов за единицу времени. Такие же проблемы наблюдаются с изготовлением преобразователя.
О создании первого прототипа было объявлено в 2016 г. При его разработке удалось частично решить вышеназванные проблемы.
Но производство в промышленных масштабах пока не налажено. Появление первых атомных элементов на рынке ожидается не раньше 2020 г.
Несмотря на все усилия ученых, ядерная батарейка по-прежнему продолжает оставаться дорогим удовольствием. Поэтому их появления в домах простых потребителей в ближайшее время ожидать не стоит.
Более-менее широкое использование атомных батареек в быту отодвинуто до 2020 года
Самой дорогой частью батареи является радиоактивный изотоп. Так 1 г этого вещества стоит 0,5 млн руб. Для производства 1 батареи требуется всего 1 мг, но и он обойдется в 5000 руб. Для батареи народного потребления это достаточно дорого.
Область применения
Несомненным плюсом всех ядерных батареек является то, что они могут эффективно функционировать при больших колебаниях температур в диапазоне -100…+100°C.
Эта устойчивость позволяет расширить область их применения. В том числе и там, где даже самые лучшие батарейки не в состоянии нормально работать. Эти изделия давно ждут на Крайнем Севере и в Арктике.
В первую очередь новые элементы питания поступят в медицинские учреждения. Первые образцы будут приспособлены к работе с медицинскими кардиостимуляторами. Новые батареи станут длительным источником питания, при этом объем самого прибора совсем не изменится. Такой кардиостимулятор сможет работать длительное время и не будет требовать замены батареи.
Атомный аккумулятор NANOTRITIUM
Вторым потребителем нового источника питания станет космическая промышленность. Батареи будут обслуживать космические аппараты.
Работы над совершенствованием батарей будут продолжены. В первую очередь ученые надеются увеличить их мощность. Будет усовершенствована алмазная структура, а это значит, увеличится напряжение и, соответственно, полезная мощность.
Всего, по прогнозам разработчиков, в перспективе возможно увеличить мощность батареи в 3 раза.
Действующие АЭС в России: краткая характеристика
В настоящее время существует 10 действующих АЭС. Особенности каждой из них будут рассмотрены далее.
- Балаковская АЭС – является крупнейшим в России производителем электроэнергии. Неоднократно было получено звание «Лучшая АЭС». В ней используются четыре блока ВВЭР-100 с двухконтурной схемой. Они были внедрены еще 80-90-х годах. Оборудование имеет герметичную защиту с железобетонным слоем. Расположена Балаковская АЭС в Саратовской области, в 12.5 км от Балаково, на левом берегу Саратовского водохранилища.
- Белоярская АЭС им. И.В. Курчатова – первая крупная ядерная энергетическая станция в СССР. Она единственная, кто имеет энергоблоки разных типов:
- №1 и №2 с реактором АМБ;
- №3 с реактором БН-600.
Вырабатывает до 10% от общего объема электрической энергии. В настоящее время многие системы Свердловска находятся в режиме длительной консервации, а эксплуатируется только энергоблок БН-600. Белоярская АЭС расположена в г. Заречный.
- Билибинская АЭС – единственный источник, снабжающий теплом г. Билбино и имеющий мощность 48 МВт. Станция вырабатывает около 80% энергии и соответствует всем требованиям, предъявляемым к установке аппаратуры:
- максимальная простота эксплуатации;
- повышенная надежность работы;
- защита от механических повреждений;
- минимальный объем монтажных работ.
Система имеет важное преимущество: при неожиданном прерывании работы блока ей не наносится вред. Станция расположена в Чукотском автономном округе, в 4,5, расстояние до Анадыря – 610 км
- Калининская АЭС. Благодаря удобному географическому расположению производит высоковольтную энергию. Мощность оборудования равна 4000 МВт. В состав входят очереди из энергетических блоков №1, №3 и №4. Применяются реакторные установки типа ВВЭР-1000.
- Кольская АЭС – первая отечественная станция, построенная за пределами полярного круга. Она включает в себя конструкции ВВЭР-440 проекта В-230 и В-213, благодаря чему вырабатывает энергию до 60%. Мощность устройства – 1760 Вт. В связи с небольшим спадом потребления ресурсов и ограничением транзита электроэнергии, устройства работают сейчас в режиме диспетчеризации. Рассматриваемая атомная станция расположена в Мурманской области, на берегу озера Имандра.
- Курская АЭС – важнейший узел Единой системы, обеспечивающий энергией большинство промышленных предприятий Курской области. Станция состоит из четырех блоков РБМК-1000 и имеет мощность 4 ГВт. Отличается тем, что в качестве теплоносителя применяется очищенная вода, которая циркулируется по определенной схеме. Сооружение находится в Курской области, на берегу реки Сейм (в районе г. Курчатов).
- Ленинградская АЭС – первая в России станция, имеющая мощнейшие реакторы РБМК-1000, а также мощность 3200 МВт. Она образована от компании ОАО «Концерн Росэнергоатом» и обеспечивает более 50% энергопотребления, создавая необходимый потенциал безопасности. Станция расположена в Ленинградской области на побережье финского залива (в районе города Сосновый бор).
- Нововоронежская АЭС – первая отечественная организация, имеющая реакторы ВВЭР. Она состоит из трех очередей: энергоблоки №1 (ВВЭР-210 и ВВЭР-365), №3, №4 (ВВЭР-440) и №5 (ВВЭР-1000). Каждый из них является головным. Мощность варьируется от 417 до 1000 мВт, в зависимости от типа устройства. Уровень снабжения электроэнергией составляет 85. Нововоронежская станция находится недалеко от Воронежа, на левой стороне Дона.
- На Юге России крупнейшей атомной электростанцией является Ростовская. Она производит до 40% энергии благодаря двум энергоблокам ВВЭР-1000 с мощностью 1000 мВт. Станция относится к числу унифицированных проектов, удовлетворяющих требования поточного производства. Она располагается в районе г. Волгодонск (Ростовская область) в 205 км от областного центра.
- Смоленская АЭС – крупная организация, способная ежегодно выдавать более 80% энергии благодаря трем блокам РБМК-1000. В 2010 году она была признана лучшей по культуре безопасности. Станция расположена в 150 километрах до Десногорска.
Типы ядерных реакторов
Их основное назначение – поддерживать контролируемую ядерную реакцию, производящую электроэнергию. На некоторых реакторах производятся изотопы. Если кратко, то они представляют собой устройства, в недрах которых одни вещества превращаются в другие с выделением большого количества тепловой энергии. Это своеобразная «печь», где вместо традиционных видов топлива «сгорают» изотопы урана – U-235, U-238 и плутоний (Pu).
В отличии, к примеру, от автомобиля, рассчитанного на несколько видов бензина, каждому виду радиоактивного топлива соответствует свой тип реактора. Их два – на медленных (с U-235) и быстрых (c U-238 и Pu) нейтронах. На большинстве АЭС установлены реакторы на медленных нейтронах. Помимо АЭС, установки «трудятся» в исследовательских центрах, на атомных субмаринах и опреснителях морской воды.
Особенности химического состава
В зависимости от веществ, которые используют внутри батареи, такие изделия могут быть солевыми, щелочными или литиевыми. Каждая группа имеет свои особенности химического состава.
Солевой
В качестве катода в солевой батарее используется цинк, а анод представляет собой стержень, изготовленный из графита и MnO2. Электролит в элементе этого типа – это хлорид аммония или калия. Для придания необходимой консистенции в него также добавляют специальный загуститель.
Элементы питания этого типа, в которых в качестве анода используются серебро, обладают значительно большим сроком годности. Называются такие элементы серебряно-цинковыми и стоят значительно дороже простых солевых батареек.
Щелочной
Строение алкалиновой батарейки практически не отличается от солевой. Разница заключается только в том, что в щелочном элементе серединный стержень устанавливается на отрицательный вывод, а не на положительный.
Химический состав изделия этого типа следующий:
- Катод – диоксид марганца.
- Анод – порошкообразный цинк.
- Электролит – гидрооксид калия.
Основное преимущество марганцево-щелочных элементов перед солевыми батареями заключается в большей ёмкости.
Литиевой
Литиевые неперезаряжаемые элементы имеют следующий химический состав:
- Анод – литий или литиевые соединения.
- Катод – диоксид марганца, пирит и другие.
- Электролит – перхлорат лития, тионилхлорид.
Литиевые элементы питания работает в различных устройствах значительно дольше щелочных и солевых изделий, но и стоимость их на порядок выше.
Основные характеристики аккумуляторов
Первый параметр, на который обращают внимание при подборе аккумулятора, это его номинальное напряжение. Напряжение одной ячейки АКБ определяется физико-химическими процессами, протекающими внутри элемента, и зависит от типа аккумулятора. Одна полностью заряженная банка выдает:
- свинцово-кислотный элемент – 2,1 вольт;
- никель-кадмиевый – 1,25 вольт;
- никель-металлогидридный – 1,37 вольт;
- литий-ионный – 3,7 вольт.
Чтобы получить более высокое напряжение, элементы собирают в батареи. Так, для автомобильного аккумулятора надо соединить последовательно 6 свинцово-кислотный банок для получения 12 вольт (точнее, 12,6 В), а для 18-вольтового шуруповерта – 5 литий-ионных банок по 3,7 вольт.
Второй важный параметр – ёмкость. Определяет время работы аккумулятора под нагрузкой. Измеряется в ампер-часах (произведение тока на время). Так, АКБ емкостью 3 А⋅ч при разрядке током 1 ампер будет разряжена за 3 часа, а при токе в 3 ампера – за 1 час.
И третий важный параметр – токотдача. Это максимальный ток, который может выдать аккумулятор. Он важен, например, для автомобильной АКБ – определяет возможность провернуть вал двигателя в холодное время года. Также способность отдавать большой ток, создавая высокий вращающий момент, имеет значение, например, для электроинструмента. А для мобильных гаджетов эта характеристика не так важна.
Электрические свойства и потребительские качества аккумуляторов зависят от их конструкции, технологии производства. Правильное применение АКБ подразумевает использование достоинств возобновляемых химических источников питания и нивелирование недостатков.
Какие существуют виды источников электрического тока?
Какие основные виды аккумуляторных батареек существуют?
Что такое литий ионный аккумулятор — устройство и виды
В чём и как измеряется емкость аккумулятора?
Какие виды батареек существуют: в чём отличия пальчиковых батареек AA от AAA
Что такое внешний аккумулятор для телефона и какой лучше выбрать?