Фотоаппараты зенит: история советского бренда фототехники

Виды

Источники питания 18650 различаются по многим параметрам, один из которых – химический состав. В электронных парогенераторах используются такие комбинации:

  • Li-Mn (литий-марганцевые). Также известны под обозначением Lithium IMR или просто IMR;
  • Li-Ion (литий-ионные);
  • Li-Po (литий-полимерные).

У каждой свои плюсы и минусы. Наиболее безопасные аккумуляторы – литий-марганцевые. Они лучше выдерживают постоянные нагрузки, устойчивы к механическим воздействиям, и показывают хорошие результаты в стресс-тестах. По этой причине Li-Mn батареям не требуется встроенная электронная защита. У аккумуляторов средний показатель максимального тока разряда, они запросто переносят высокотоковую зарядку. Без ложки дегтя не обошлось. Минус литий-марганцевых источников питания – малый уровень емкости. Впрочем, встречаются новые химические составы, и емкость этой разновидности выросла с 1600 мАч до 2000 – 2500 мАч.

Li-Ion аккумуляторы отличаются большей емкостью.

Li-Ion аккумуляторы, в сравнении с IMR, более емкие. Но они нестабильные, поэтому предполагают встроенную защиту. Соответственно, это приводит к повышению их цены. Другой момент в том, что литий-ионные батареи капризны – на их состояние влияют температуры (не терпят жары и холода), неправильная зарядка (токи более 0.5 А) и т.д. Аккумулятор при неправильной эксплуатации перестает держать заряд и в скором времени выходит из строя. Li-Ion батареи применяются для питания электронных сигарет, ноутбуков, электробритв, электробайков и пр.

Третья разновидность – Li-Po аккумуляторы, более известные как «гранаты». Так их прозвали за то, что они менее стабильны и безопасны. Используя их, нарушать правила эксплуатации не стоит. Из-за перезаряда, переразряда, короткого замыкания, повышенных температур, механического воздействия батарея начнет саморазрушение. Обычно это выражается во взрыве, чего точно не хотелось бы вейперу, подносящему девайс к лицу. Если в новостях говорят, что взорвался вейп, 95% вероятность, что в нем стояли литий-полимерные аккумуляторы. Конечно, виноват пользователь, но достается продавцам и непосредственно vape-индустрии. Недостатки серьезные, но и преимущества имеются:

  • низкие просадки под нагрузкой;
  • высокие значения выходного тока;
  • практически не греются под нагрузкой.

Маркировка конденсаторов с помощью численно-буквенного кода.

Маркировка конденсаторов может указывать на следующие параметры: Тип конденсатора, его номинальную емкость, допустимое отклонение емкости, Температурный Коэффициент Емкости(ТКЕ), номинальное напряжение работы.

Порядок маркировки может быть разным — первой строкой может стоять номинальное напряжение, ТКЕ или фирменный знак производителя. ТКЕ может отсутствовать вовсе, номинальное напряжение тоже указываются не всегда! Практически всегда имеется маркировка номинальной емкости. Что касается емкости, то имеются различные способы ее знаковой кодировки. 1. Маркировка емкости с помощью трех цифр. При такой маркировке первые две цифры указывают на значение емкости в пикофарадах, а последняя на разрядность, т. е. количество нулей, которых к первым двум цифрам необходимо добавить. Но если последняя цифра — «9» происходит деление на 10.

Код Емкость(пФ) Емкость(нФ) Емкость(мкФ)
109 1,0(пФ) 0,001(нФ) 0,000001(мкФ)
159 1,5(пФ) 0,0015(нФ) 0,0000015(мкФ)
229 2,2(пФ) 0,0022(нФ) 0,0000022(мкФ)
339 3,3(пФ) 0,0033(нФ) 0,0000033(мкФ)
479 4,7(пФ) 0,0047(нФ) 0,0000047(мкФ)
689 6,8(пФ) 0,0068(нФ) 0,0000068(мкФ)
100 10(пФ) 0,01(нФ) 0,00001(мкФ)
150 15(пФ) 0,015(нФ) 0,000015(мкФ)
220 22(пФ) 0,022(нФ) 0,000022(мкФ)
330 33(пФ) 0,033(нФ) 0,000033(мкФ)
470 47(пФ) 0,047(нФ) 0,000047(мкФ)
680 68(пФ) 0,068(нФ) 0,000068(мкФ)
101 100(пФ) 0,1(нФ) 0,0001(мкФ)
151 150(пФ) 0,15(нФ) 0,00015(мкФ)
221 220(пФ) 0,22(нФ) 0,00022(мкФ)
331 330(пФ) 0,33(нФ) 0,00033(мкФ)
471 470(пФ) 0,47(нФ) 0,00047(мкФ)
681 680(пФ) 0,68(нФ) 0,00068(мкФ)
102 1000(пФ) 1(нФ) 0,001(мкФ)
152 1500(пФ) 1,5(нФ) 0,0015(мкФ)
222 2200(пФ) 2,2(нФ) 0,0022(мкФ)
332 3300(пФ) 3,3(нФ) 0,0033(мкФ)
472 4700(пФ) 4,7(нФ) 0,0047(мкФ)
682 6800(пФ) 6,8(нФ) 0,0068(мкФ)
103 10000(пФ) 10(нФ) 0,01(мкФ)
153 15000(пФ) 15(нФ) 0,015(мкФ)
223 22000(пФ) 22(нФ) 0,022(мкФ)
333 33000(пФ) 33(нФ) 0,033(мкФ)
473 47000(пФ) 47(нФ) 0,047(мкФ)
683 68000(пФ) 68(нФ) 0,068(мкФ)
104 100000(пФ) 100(нФ) 0,1(мкФ)
154 150000(пФ) 150(нФ) 0,15(мкФ)
224 220000(пФ) 220(нФ) 0,22(мкФ)
334 330000(пФ) 330(нФ) 0,33(мкФ)
474 470000(пФ) 470(нФ) 0,47(мкФ)
684 680000(пФ) 680(нФ) 0,68(мкФ)
105 1000000(пФ) 1000(нФ) 1,0(мкФ)

2. Второй вариант — маркировка производится не в пико, а в микрофарадах, причем вместо десятичной точки ставиться буква µ.

Код Емкость(мкФ)
µ1 0,1
µ47 0,47
1 1,0
4µ7 4,7
10µ 10,0
100µ 100,0

3.Третий вариант.

Код Емкость(мкФ)
p10 0,1пФ
Ip5 0,47пФ
332p 332пФ
1HO или 1no 1нФ
15H или 15no 15,0нФ
33H2 или 33n2 33,2нФ
590H или 590n 590нФ
m15 0,15МкФ
1m5 1,5мкФ
33m2 33,2мкФ
330m 330мкФ
10m 10,0мкФ

У советских конденсаторов вместо латинской «р» ставилось «п».

Допустимое отклонение номинальной емкости маркируется буквенно, часто буква следует за кодом определяющим емкость(той же строкой).

Буквенное обозначение Допуск(%)
B ± 0,1
C ± 0,25
D ± 0,5
F ± 1
G ± 2
J ± 5
K ± 10
M ± 20
N ± 30
Q -10…+30
T -10…+50
Y -10…+100
S -20…+50
Z -20…+80

Далее, может следовать(а может и отсутствовать!) маркировка Температурного Коэффициента Емкости(ТКЕ). Для конденсаторов с ненормируемым ТКЕ кодировка производится с помощью букв.

Допуск при -60²…+85²(%) обозначение Буквенный код
± 10 B
± 20 Z
± 30 D
± 50 X
± 70 E
± 90 F

Конденсаторы с линейной зависимостью от температуры.

ТКЕ(ppm/²C) Буквенный код
100(+130….-49) A
33 N
0(+30….-47) C
-33(+30….-80) H
-75(+30….-80) L
-150(+30….-105) P
-220(+30….-120) R
-330(+60….-180) S
-470(+60….-210) T
-750(+120….-330) U
-500(-250….-670) V
-2200 K

Далее следует напряжение в вольтах, чаще всего — в виде обычного числа. Например, конденсатор на этой картинке промаркирован двумя строчками. Первая(104J) — означает, что его емкость составляет 0,1мкФ(104), допустимое отклонение емкости не превышает ± 5%(J). Вторая(100V) — напряжение в вольтах.

Кроме того, напряжение конденсаторов может быть так же, закодировано с помощью букв(см. таблицу ниже).

Напряжение (В) Буквеный код
1 I
1,6 R
3,2 A
4 C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 C
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
400 Y
450 U
500 V

«Камбала» собирается в космос

Именно такое прозвище дали проекту 11К77 – ракете «Зенит» – ее конструкторы. Первая ступень носителя состояла из пары параллельно расположенных блоков с массой порядка 450 тонн и диаметром 3 метра и массой полезного груза 12 тонн. Трехкамерный первой ступени ракетный двигатель первой РД-124 и второй ступени однокамерный двигатель РД-125 работали на керосин-кислороде с дожиганием окислительных газов и были спроектированы конструкторским бюро «Энергомаш». Именно такое топливо признано экологически наиболее безопасным. Впоследствии первую ступень ракеты «Зенит» унифицировали с 11К25 «Энергия» (ступень первая), что дало право назвать ее первой в классе средних ракетоносителей.

Будущее «Зенита»

В 2016 году производитель ракетоносителей Южный машиностроительный завод им. А. М. Макарова подписал контракт на поставки двенадцати ракет-носителей для корпорации S7 для запусков в рамках проекта «Морской старт». Но так как права на РД-171 принадлежат российскому федеральному космическому агентству, а оно не имеет обязательств перед Украиной, пока непонятно, как обязательства по контракту будут выполнены. Сегодня на «Южмаше» ведется сборка только двух ракетоносителей.

Трудные времена наступили для семейства носителей «Зенит». Но ни аварии, ни экономические трудности не сломили дух конструкторов и производителей. Как во время появления, так и сегодня ракета «Зенит» остается лучшим носителем космических аппаратов на орбиты среднего класса. Конкурентные возможности её по-прежнему довольно высоки. Есть потенциал нереализованных возможностей и перспективы. Мирный космос ждет своих первооткрывателей и исследований, ракета-носитель «Зенит» готова вывести на орбиты аппараты научно-исследовательского предназначения. А это означает, что полет продолжается!

Методы восстановления аккумуляторных банок

В некоторых случаях (при заказе на АлиЭкспресс, например) новые банки ждать приходится неделями. А работать надо. В таком случае можно попытаться временно улучшить характеристики «подсевших» батареек.

Краткосрочно можно характеристики возобновить

Никель-кадмиевые аккумуляторы

Ni-Cd аккумуляторы пересыхают, когда нагреваются во время работы. Есть несколько вариантов восстановления плотности/количества электролита.

Долить в электролит дистиллированную воду. Их аккуратно извлекают из блока, не повредив пластины. Дальше действия такие:

      • В корпусе — ближе ко дну или верху — проделывают аккуратно отверстие. Диаметр — не больше 1 мм. Оно должно быть только в оболочке. Следите, чтобы сверло не прошло дальше.
      • Батарейку кладём набок, дыркой кверху. 

      • В шприц набираем дистиллированную воду. Добавляем воду внутрь пока не начинает выливаться и оставляем на сутки.
      • Временно восстановить емкость аккумуляторной батарейки можно если уплотнить электролит внутри никель-кадмиевых элементов. Для этого корпус надо равномерно сжать по всей высоте. Не сжимать только верх и низ, чтобы не повредить выводы.

Сильно разряженная батарея может не принимать заряд. Чтобы «стронуть» её с нуля нужно кратковременно подать мощный импульс. Конденсатор ёмкостью 7000 — 7500 мкФ, заряженный до 10 — 20 В подключают к банке. Проверяем остаточный заря на банке, он не должен быть выше 0,6 — 0,8 В. Пробуем принимает ли элемент заряд.

Как восстановить литий-ионный аккумулятор

Литий-ионные батареи от перегрева вздуваются. Повышенное давление внутри изгибает контактную пластину. Такие батарейки можно увидеть, легко заметить. Для уверенности можно проверить их заряд. Обычно он очень низкий или нулевой. Восстановить вздутый литий-ионный аккумулятор получается редко, но можно попробовать. Нужно выпустить избыток газа. Аккумулятор извлекаем из блока, не отрывая контактной пластины. Манипуляции проводим такие:

  • Отгибаем пластину на положительном контакте, но не отрываем её.
  • Под пластину заводим шило. Медленно вводим остриё внутрь батареи пока не начнёт выходи́ть газ.
  • Когда газ выйдет, отверстие заделывают клеем, силиконом, любым другим способом.
  • Припаиваем пластину на место.

  • Устанавливаем батарейку в блок и заряжаем его, проверяя вольтаж восстановленного элемента.
  • Разряжаем батарею и проводим повторные измерения.

Нельзя сказать, что описанные способы восстановления аккумуляторных батареек работают всегда. Все они рискованны. Электролит в батарейках — гелеобразная едкая субстанция, которая, попав на кожу, вызывает химический ожог. Потому все работы проводим очень аккуратно. Тем не менее иногда восстановленный аккумулятор может проработать несколько месяцев без проблем, что позволяет выждать требуемое время.

Конструкция и разновидности аккумуляторов для шуруповёртов

Практически все производители во всех странах мира выпускают одинаковые по конструкции и принципу действия аккумуляторы для шуруповёртов. Многие производители выпускают аккумуляторы сразу для нескольких производителей шуруповёртов. Аккумуляторная батарея выполняется съёмным и выглядит следующим образом.

Аккумулятор от шуруповёрта Bosch PSR 14,4 В

В нашем случае это аккумулятор для шуруповёрта Bosch PSR 14,4 В. В нём изначально один саморез закрыт пластиком. В случае вскрытия теряется гарантия.

Аккумулятор в сборе

«Гирлянда»

Один элемент Поскольку батарейки соединены последовательно, общее напряжение аккумуляторной батареи складывается из суммы их напряжений. На каждом таком элементе нанесены значения номинального напряжения и ёмкости, а также тип аккумулятора. Чаще всего используются Ni─Cd аккумуляторы для шуруповёрта, но есть и другие разновидности. Ниже представлены типы элементов, используемых в аккумуляторах для шуруповёртов:

  • Ni─Cd. Никель–кадмиевые аккумуляторы. Номинальное напряжение одного элемента 1,2 вольта;
  • Ni─MH. Никель-металлогидридный. Номинальное напряжение одного элемента 1,2 вольта;
  • Li─Ion. Литий-ионный. Номинальное напряжение 3,6 вольта.

Разновидности элементов для аккумулятора шуруповёрта

Ni─Cd

Никель-кадмиевые аккумуляторы для шуруповёртов являются наиболее распространёнными на сегодняшний день. Они имеют доступную цену, сохраняют работоспособность при отрицательных температурах, могут храниться в разряженном состоянии, не теряя свои характеристики. При этом у кадмиевых аккумуляторов для шуруповёрта есть и свои недостатки. Это токсичность кадмия (вредное производство и сложная утилизация), «эффект памяти», достаточно высокий саморазряд и небольшая ёмкость, малое количество рабочих циклов заряд-разряд. Утилизация аккумуляторов для автомобиля проводится значительно проще, чем кадмиевых.

Ni─MH

Никель─металлогидридные аккумуляторы распространены меньше, чем никель кадмиевые аккумуляторы для шуруповёртов. К их преимуществам стоит отнести отсутствие токсичных компонентов, экологически чистое производство, незначительный «эффект памяти» и меньший саморазряд, чем у никель-кадмиевых батарей. Кроме того, если сравнивать с Ni─Cd аккумуляторными батареями, никель─металлогидридные имеют большую ёмкость и выдерживают большее число циклов заряд-разряд. Дополнительно советуем прочитать о том, как заряжать Ni─MH аккумуляторы. К недостаткам следует отнести высокую стоимость, чувствительность к отрицательным температурам. Кроме того, Ni─MH батареи при хранении в разряженном состоянии утрачивают часть своих характеристик.

Li─Ion

Литий─ионные аккумуляторы в шуруповёртах встречаются реже. Среди плюсов стоит отметить отсутствие «эффекта памяти» и саморазряда. Ёмкость литий─ионных аккумуляторов выше и в разы больше число циклов заряд-разряд, чем у оксидно─никелевых. К тому же у элемента большее номинальное напряжение. Поэтому требуется меньшее число элементов, а значит, такие аккумуляторы имеют меньший вес и размеры. Среди недостатков следует отметить большую стоимость. Если сравнивать с Ni─Cd аккумуляторами для шуруповёрта, то цена Li─Ion практически в три раза больше. Стоит отметить, что за 2─3 года интенсивного использования Li─Ion аккумулятор существенно теряет ёмкость из-за разложения лития.

Конструкция аккумулятора для шуруповёрта

Ничего сложного в конструкции аккумулятора нет. Его разбор был показан выше. Стоит только добавить информацию о контактах на корпусе. У аккумулятора для шуруповёрта их четыре (рассматривается модель Bosch PSR 14,4 В).

Контакты аккумулятора шуруповёрта На изображении отмечены следующие контакты:

  • 1 – плюс;
  • 2 – минус;
  • 3 ─ контакт термистора (датчик температуры). Термистор нужен для ограничения или отключения тока заряда. Он срабатывает при увеличении температуры аккумуляторных элементов до определённого значения. При ускоренной зарядке через элемент идёт большой ток, и он нагревается, а термистор предотвращает его выход из строя;
  • 4 ─ этот контакт подключается через сопротивление и называется сервисным. Его используют сложные зарядные устройства, предназначенные для выравнивания заряда на аккумуляторных элементах.

Конденсаторы постоянной емкости

Конденсаторы постоянной емкости применяют в различных схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсации напряжений выпрямителя. В сочетании с другими элементами схем конденсаторы образуют резонансные контуры, широко используемые в радиоаппаратуре. Конденсаторы постоянной емкости классифицируют по величине номинальной емкости, классу точности, номинальному рабочему напряжению, назначению, материалу диэлектрика и по конструктивным признакам.

Номинальные величины емкостей конденсаторов установлены ГОСТ 2519 — 60. При изготовлении конденсаторов действительное значение емкости отличается от номинального, обозначенного в маркировке. Допустимое отклонение емкости от номинального называется допуском. По этому принципу все конденсаторы разделяют на пять классов: 0, 1, II, III, IV, допуски их соответственно составляют ±2%; ±5%; ±10%; ±20% и от — 20 до + 50%.

В зависимости от назначения различают контурные, разделительные, блокировочные и фильтровые конденсаторы. По материалу диэлектрика конденсаторы делят на слюдяные, керамические, бумажные, металлобумажные, бумаго-масляные, пленочные, стеклоэмалевые, стеклокерамические, электролитические, воздушные, вакуумные, газонаполненные. По конструктивному признаку конденсаторы подразделяют на трубчатые, дисковые, бочоночные, горшковые, опрессованные и герметизированные, плоские и цилиндрические и т. д.

Независимо от вида конденсатор характеризуется рабочим напряжением. Рабочим напряжением называется напряжение, под которым обкладки конденсатора могут длительно находиться без пробоя разделяющего их диэлектрика. Рабочее напряжение выражают в вольтах. Большое значение для нормальной работы конденсатора имеет сопротивление его изоляции. При малом сопротивлении изоляции возникают утечки, нарушающие нормальную работу схемы. Потери в конденсаторе характеризуются тангенсом угла диэлектрических потерь, выражающим отношение мощности активных потерь к реактивной мощности конденсатора.

В маломощных конденсаторах потери энергии в основном вызываются проводимостью диэлектрика и диэлектрическим гистерезисом, т. е. потерями на поворот полярных молекул в направлении поля при приложении напряжения к обкладкам. Потери в обкладках и выводах малы, поэтому ими обычно пренебрегают. Одной из важнейших характеристик конденсатора является стабильность — неизменность величины емкости конденсатора во время работы. Изменение емкости может быть как временным, так и необратимым. Основным фактором, влияющим на стабильность емкости конденсатора, является воздействие температуры окружающей среды и нагрев конденсатора за счет рассеиваемой на нем мощности. При повышении температуры увеличиваются геометрические размеры материала, что и влечет за собой временное (до возвращения температуры к первоначальному значению) изменение емкости.

Норма для основных свойств аккумулятора

Каким минимальным это значение должно быть, чтобы можно было запустить двигатель? Точного показателя здесь нет. В стандартном состоянии это свойство у полностью заряженной батареи должно составлять в среднем 12,6-12,7 вольт.

Зависимо от конкретных условий этот показатель может незначительно изменяться, и в этом нет ничего плохого. Так например, некоторые производители, заверяют что у их продукции напряжение около 13 – 13,2 В, это допустимо, однако сразу хочу вас предупредить.

Но оно может гулять и в другую сторону, когда падает ниже 12 вольт – это свидетельствует о том, АКБ разряжена на 50%.

В таком случае устройству понадобиться срочная зарядка, поскольку ее эксплуатация в таком состоянии гарантировано приводит к сульфатации пластин свинца. Это снижает и работоспособность АКБ, и продолжительность ее эксплуатации.

Но даже в случае такого низкого напряжения запустить мотор легкового транспорта вполне возможно. Если аккумулятор находится в рабочем состоянии, ему не требуется ремонт и генератор при работе двигателя обеспечивает зарядку батареи, устройство даже в таком состоянии можно смело использовать.

В том же случае, когда данный электрический параметр аккумулятора надает ниже 11,6 В, батарея практически полностью разряженная, дальнейшее ее использование в таком состоянии без подзарядки и проверки на работоспособность невозможно.

Однако на практике это встречается очень редко. Чаще всего для легковых автомашин составляет 12,2-12,49 вольта, что свидетельствует о неполном заряде.

Но в этом нет ничего плохого: снижение работоспособности и качество устройства начинается в том случае, если происходит снижение до 11,9 вольт или ниже.

Проверка аккумулятора шуруповерта

Для определения реальных основных параметров аккумулятора проводится проверка.

элементы аккумулятора могут изменить свою емкость

Проверку аккумулятора шуруповерта осуществляют при полной зарядке. Полная проверка проходит в несколько этапов.

Инструменты для проверки

Проверку электрического накопителя можно произвести при помощи:

  • вольтметра постоянного напряжения на 15 В;
  • амперметра и вольтметра постоянного тока;
  • тестера;
  • мультиметра.

Из инструментов следует обзавестись:

  • плоскогубцами;
  • отверткой;
  • ножом;
  • паяльником.

Первый этап проверки

Показания снимаются периодически

Так, спустя полчаса после начала зарядки значение напряжения будет 13 В. Если измерить еще через полчаса, то напряжение будет равно 13.5 В. Через 2 часа после начала зарядки напряжение уже будет около 14 В. Это говорит о том, что достигнут максимум. У полностью заряженного аккумулятора напряжение имеет значение равное 17 В.

Оценить качество накопителя можно, измерив ток во время процесса зарядки. Если аккумулятор в хорошем состоянии, то для него характерен устойчивый рост тока в 1 час в течение процесса зарядки. Прохождение значения тока отметки в 1 А говорит о нормальном функционировании накопителя.

некоторые элементы в аккумуляторе являются нерабочими

По результатам первой проверки можно составить начальное впечатление о работоспособности аккумуляторных элементов. Это поможет установить необходимость в разборке аккумулятора.

Проверка под нагрузкой

Для ответа на вопрос в течение какого времени разрядится аккумулятор следует произвести проверку накопителя под нагрузкой. Нагрузку нужно выбирать исходя из мощности накопителя. Если она неизвестна, то считается что мощность нагрузки равна половине произведения силы тока, который отдается аккумулятора при работе, на напряжение накопителя. Как правило, это значение принимается равным 35–40 Вт. Таким образом, в качестве нагрузки можно применить автомобильную фару (35 Вт) или воспользоваться спот-лампой на 12 В с такой же мощностью.

в аккумуляторе имеется поврежденный элемент

Проверка элементов питания накопителя

Итак, пусть окажется, что с помощью предварительных проверок было установлено наличие неисправных элементов в накопителе. Тогда необходимо разобрать аккумулятор и извлечь последовательно соединенные элементы питания — «банки». Как уже говорилось выше, аккумулятор состоит из 10–12 таких элементов с напряжением в 1.2 В.

После осмотра следует провести измерение напряжения каждой из «банок». Напряжение одного элемента не должно быть меньше 1.2 В. При проведении измерений аккумуляторные элементы следует отключать от соединений со всякого рода датчиками. Прибор для измерения подключается к полюсам батареи. «Банки» с пониженным напряжением подлежат замене. Если при простом измерении не было выявлено несправных элементов, следует померить «банки» под нагрузкой.

Проверка по величине сопротивления

Способность к нормальному функционированию каждой батареи можно проверить, сравнив «банки» по внутреннему сопротивлению. Определяется величина путем деления рабочих параметров напряжение на силу тока и вычетом сопротивления нагрузки.

В качестве нагрузки следует взять резистор сопротивлением в 10 Ом

Для лучшего понимания приведем примерные расчеты. Допустим, в ходе измерения под нагрузкой получены данные для одной «банки»: рабочее напряжение — 1.19 В и рабочая сила тока — 112 мА. Перед тем как произвести вычисление не забываем перевести значение силы тока из мА в А — 0.112 А. Производим соответствующие действия (1.19/0.112) — 10 = 0.63 Ом. Напомним, что вычитаемое в нашем выражении это сопротивление нагрузки резистора (10 Ом).

Проверка остальных параметров

Каждый вид аккумулятора обладает определенной величиной саморазряда.

Так, в течение месяца хранения:

  • никель-кадмиевый аккумулятор может разрядиться на 20%;
  • никель-металлогидридные — 30 %;
  • литий-ионный накопитель — до 8 %.

Проверка элементов электропитания на наличие «эффекта памяти» осуществляется путем полной зарядки аккумулятора и полной его разрядки. Производят несколько циклов заряд-разрядки (3 или 4). Разрядку аккумулятора можно осуществлять при помощи лампы в 12 В. В ходе действий производят измерения остаточного рабочего напряжения и напряжения холостого хода. После многократного повторения циклов «эффект памяти» исчезнет.

Что такое конденсатор?

Прибор, который накапливает электроэнергию в виде электрических зарядов, называется конденсатором.

Количество электричества или электрический заряд в физике измеряют в кулонах (Кл). Электрическую ёмкость считают в фарадах (Ф).

Уединенный проводник электроёмкостью в 1 фараду — металлический шар с радиусом, равным 13 радиусам Солнца. Поэтому конденсатор включает в себя минимум 2 проводника, которые разделяет диэлектрик. В простых конструкциях прибора — бумага.

Работа конденсатора в цепи постоянного тока осуществляется при включении и выключении питания.Только в переходные моменты меняется потенциал на обкладках.

Конденсатор в цепи переменного тока перезаряжается с частотой, равной частоте напряжения источника питания. В результате непрерывных зарядов и разрядов ток проходит через элемент. Выше частота — быстрее перезаряжается прибор.

Сопротивление цепи с конденсатором зависит от частоты тока. При нулевой частоте постоянного тока величина сопротивления стремится к бесконечности. С увеличением частоты переменного тока сопротивление уменьшается.

Какие батарейки можно заряжать в зарядном устройстве

Химические процессы, протекающие в обычном гальваническом элементе, необратимы. Исчерпав свой ресурс, он перестает вырабатывать электрический ток. Определить их просто: обычно на корпусе такого элемента питания присутствует надпись «do not recharge» — «перезарядке не подлежит». Продлить ему жизнь можно единственным способом — попытаться поместить в менее энергоемкое устройство. Так, например, батарейки, которые не подходят для радиоуправляемой машинки, могут подойти для работы пульта от телевизора. Единственный тип батареек, которые можно правильно перезаряжать большое число раз — это аккумуляторные. Их можно отличить по маркировке rechargeable battery. Рабочее напряжение аккумуляторных батареек ниже, чем у обычных — 1.2 Вольта. Аккумуляторные элементы питания дороже обычных: чем больше их мощность и количество циклов перезарядки, тем выше цена. Кроме того, вам потребуется специальное зарядное устройство, которое приобретается отдельно. Часто такие зарядные устройства снабжены индикатором, который покажет, насколько зарядился аккумулятор. Время зарядки аккумуляторных батареек составляет 8—12 часов.

Какое напряжение использует каждый компонент ПК?

После того, что было объяснено ранее, вы уже будете знать, что источники питания имеют несколько разных напряжений из-за электрических требований каждого из аппаратных компонентов ПК, поэтому теперь самое время посмотреть, какой компонент использует каждое из напряжений и особенно почему все не унифицировано, чтобы все работало с одним значением напряжения.

  • + 12 В : процессор, видеокарта, вентиляторы и некоторые карты расширения PCIe. Это также основное напряжение материнской платы, хотя для его регулирования оно должно проходить через собственные VRM. Как правило, именно шина обслуживает компоненты оборудования с наибольшим потреблением.
  • + 5В: механические жесткие диски, оптические приводы, некоторые карты расширения PCIe и USB. Все порты USB на ПК работают от 5 В, включая подключаемые к ним периферийные устройства.
  • + 3.3В: Оперативная память и твердотельные накопители в формате M.2. Кроме того, все разъемы PCIe также могут подавать напряжение +3.3 В.

Причина, по которой источники имеют разные значения напряжения и, следовательно, разные шины, связана с электрическими требованиями к компонентам. Поскольку транзисторы становились все меньше и меньше на микросхемах, для них стало предпочтительнее работать с меньшими значениями напряжения, и это становилось все более и более необходимым по мере увеличения плотности транзисторов в процессорах.

Для подачи большого количества низковольтного питания к процессору, начиная с эры Pentium, материнские платы начали включать в себя стабилизатор напряжения, чтобы иметь возможность самостоятельно контролировать, какое напряжение и ток подается на каждый компонент. Большинству современных процессоров может потребоваться до 100 А при 2 В или меньше, поэтому нецелесообразно брать эти значения с шины +12 В и иметь возможность делать это с другой, которая работает с более низким напряжением, поскольку это означает меньше работы для регулятор.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Раздольная энергия
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: