Как сделать аккумулятор или батарейку в домашних условиях

Содержание

В гальванический элемент или гальванический элемент — это тип электрохимического элемента, который состоит из двух разных металлов, погруженных в две половинные ячейки, в которых соединение в растворе активирует спонтанную реакцию.

Затем один из металлов в одной из полуэлементов окисляется, в то время как металл в другой половине ячейки восстанавливается, производя обмен электронами через внешнюю цепь. Это позволяет использовать электрический ток.

Название «гальванический элемент» дано в честь одного из пионеров экспериментов с электричеством: итальянского врача и физиолога Луиджи Гальвани (1737-1798).

В 1780 году Гальвани обнаружил, что если кабели из разнородных металлов соединить одним концом, а свободные концы привести в контакт с бедром (мертвой) лягушки, то произойдет сжатие.

Однако первым, кто построил электрохимический элемент для производства электричества, был также итальянец Алессандро Вольта (1745-1827) в 1800 году, отсюда и альтернативное название гальванического элемента.

Наркоз

С древнейших времен человечество мечтало избавиться от боли. Особенно это касалось лечения, которое порой было болезненнее самого недуга. Травы, крепкие напитки лишь притупляли симптомы, но не позволяли совершать серьезных действий, сопровождаемых серьезными болевыми ощущениями. Это существенно тормозило развитие медицины. Николай Иванович Пирогов – великий русский хирург, которому мир обязан многими важнейшими открытиями, внес огромный вклад в анестезиологию. В 1847 году он обобщил свои эксперименты в монографии по наркозу, которая была издана во всем мире. Тремя годами позднее он впервые в истории медицины начал оперировать раненых с эфирным обезболиванием в полевых условиях.  Всего великий хирург провел около 10 000 операций под эфирным наркозом. Также Николай Иванович является автором топографической анатомии, которая не имеет аналогов в мире.

Алессандро Вольта и его изобретение

До конца XVIII века ни один ученый не занимался экспериментами по выработке, передаче и хранению электрической энергии. Пытались создать управляемый непрерывный ток, однако безуспешно. Но настал черед Алессандро Вольты.

После серии испытаний, навеянных опытом Гальвани, он пришел к выводу: лягушка либо любое другое животное не дергается, если соприкасается с предметами из одного металла. Но стоит взять разные металлические пластины — эффект налицо. Вольта сконструировал свою башню из пластин и доказал, что в тканях животного ток не появляется сам по себе. Он зарождается между металлами за счет химической реакции.

В 1800 году Алессандро Вольта изобрел первую батарейку. Точнее, это был первый аккумулятор, вошедший в историю как вольтов столб.

Конструкция представляла собой цилиндр, внутри которого размещались пластины из цинка и меди. Сосуд заполнялся электролитом — смесью рассола с уксусом. Металлы лежали поочередно, не касаясь один другого. Благодаря химической реакции начинало вырабатываться электричество. Достоинство изобретения итальянца заключалось в том, что в столбе получался малый ток, в отличие от прошлых экспериментов. Теперь силой тока удавалось управлять.

Вольта показал свое детище Наполеону Бонапарту, который настолько впечатлился увиденным, что даровал итальянцу графский титул. Кроме того, единицу электродвижущей силы назвали именем Алессандро. Конечно, его изобретение мало походило на современные батарейки. Но принцип действия элементов питания остается тем же самым.

Схема Вольтова столба / Фото: wikimedia.org

Типы гальванических элементов

Выделяют ряд батареек определенных типов.

Таблица гальванических элементов

Тип Напряжение Основные плюсы
Литиевые 3 V Большая емкость, высокая сила тока.
Солевые батарейки или угольно – цинковые 1.5 в Самые дешевые.
Никельоксигидроксильные NiOOH 1.6 вольт Повышенный ток. Большая емкость.
Щелочные или алкалиновые 1.6 V Большая сила тока. Хороший объем.

Более детальнее эта тема раскрыта в статье виды батареек!

Назначение гальванического элемента

Он предназначен для запуска электрической технике. Это могут быть:

  1. Часы.
  2. Пульты.
  3. Фонарики.
  4. Медицинское оборудование.
  5. Ноутбуки.
  6. Игрушки.
  7. Брелки.
  8. Телефоны.
  9. Лазерные указки.
  10. Калькуляторы.

И им подобные окружающие нас вещи.

Рекомендации

  1. Кейтли, Джозеф Ф (1999). Дэниэл Селл. Джон Уайли и сыновья. С. 49–51. ISBN  978-0-7803-1193-0.
  2. Оствальд, Вильгельм (1980). Электрохимия: история и теория.
  3. Хотон, Брайан (2007) Скрытая история: потерянные цивилизации, тайные знания и древние тайны. Карьера Пресса. ISBN  1564148971. стр. 129–132
  4. Ashcroft, N.W .; Мермин, Н. Д. (1976). Физика твердого тела. Форт-Уэрт, Техас: Харкорт.
  5. ^
  6. Аткинс, П; де Паула (2006). Физическая химия. J. (8-е изд.). Издательство Оксфордского университета. ISBN  978-0-19-870072-2. Глава 7, разделы «Равновесная электрохимия»
  7. Аткинс, П; де Паула (2006). Физическая химия. J. (8-е изд.). Издательство Оксфордского университета. ISBN  978-0-19-870072-2. Раздел 25.12 «Рабочие гальванические элементы»

Правила использования и утилизации

Батарейки нежелательно применять при крайних температурах — сильно охлаждать или нагревать. Это может привести к весьма неприятным последствиям. Если вам пришлось использовать батарейки в холоде, например, зимой на улице, рекомендуется не менее получаса выдержать их в комнатной температуре.

Случается, что батарейки, особенно щелочные, текут. Такое происходит когда нарушается герметичность корпуса батарейки. Использовать эти батарейки ни в коем случае нельзя — это может привести к повреждениям электроприборов.

Что касается утилизации отработанных батареек или аккумуляторов, то этим должны заниматься специальные организации или предприятия. В крупных городах можно найти специально организованные приёмные пункты, куда можно сдать использованные батарейки для их дальнейшей утилизации. Правда, не в каждом городе такой пункт приёма организован. Вопрос, что делать в этом случае остаётся открытым.

  • А. Вольта. «Об электричестве, возбуждаемом простым соприкосновением различных проводящих веществ».
  • Радовский М.И. «Гальвани и Вольта».
  • Спасский Б.И. «История физики».
  • Свободная электронная энциклопедия Википедия, раздел «Химический источник тока».
  • Свободная электронная энциклопедия Википедия, раздел «Типоразмеры гальванических элементов».

Атомная и водородная бомба

Академик Игорь Васильевич Курчатов занимает особое место в науке ХХ века и в истории нашей страны. Ему – выдающемуся физику – принадлежит исключительная роль в разработке научных и научно-технических проблем овладения ядерной энергией в Советском Союзе. Решение этой сложнейшей задачи, создание в cжатые сроки ядерного щита Родины в один из наиболее драматических периодов истории нашей страны, разработка проблем мирного использования ядерной энергии было главным делом его жизни. Именно под его началом создается и успешно испытывается в 1949 году самое страшное оружие послевоенного времени. Без права на ошибку, иначе – расстрел… А уже в 1961 году группой физиков-ядерщиков лаборатории Курчатова было создано самое мощное взрывное устройство за всю историю человечества — водородная бомба АН 602, за которой тут же закрепилось вполне уместное историческое название — «царь-бомба». При испытании этой бомбы сейсмическая волна, возникшая в результате взрыва, три раза обогнула земной шар.

Почему машины ВАЗа назвали «Жигулями», и как они стали «Ладами»?

Мне стало интересно, из-за чего классика АвтоВАЗа получила имя «Жигули», и почему его сменили на «Ладу». Покопавшись в истории вопроса, я нашёл несколько версий.

Версия №1 . Первыми «Жигулями» стал не кто иной, как ВАЗ-2101. Перед запуском «копейки» в серийное производство, руководство новоиспечённого завода объявило всесоюзный конкурс на имя для нового семейства автомобилей.

Поскольку об этом объявили в прессе, дирекция предприятия получила около 30 000 писем и телеграмм с возможными вариантами из разных уголков страны. Чтобы отобрать лучших, собрали государственную комиссию и выбрали 8 финалистов.

Но в этот момент, конструктор по фамилии Черный вклинился в процесс со своим названием – « Жигули ». И неизвестно как, но именно этот вариант и утвердили в правительстве.

Версия №2 . Она частично перекликается с первой, но выглядит более правдоподобно. В конце 1960-х, генеральный директор ВАЗа, который ещё был и заместителем министра автомобильной промышленности страны, поручил Борису Поспелову (заму первого главного конструктора завода) придумать название для автомобилей, которые предстоит выпускать новому предприятию.

Через два дня на столе начальника лежали 8 различных наименований. Но здесь снова появился конструктор Чёрный, предложивший «Жигули». И в результате голосования с двумя турами, именно этот вариант и одержал победу.

Почему «Жигули» заменили на «Лада»? Всё дело в экспорте. Ведь наши промышленники имели большие виды на зарубежные страны, в плане экспорта отечественных машин, ведь они приносили в СССР валюту. Но был один нюанс.

В некоторых европейских странах, слово «Жигули» было созвучно с понятием «жиголо», а что оно означает, вы наверняка знаете. И чтобы не портить репутацию бренду, ВАЗ быстро поменял название на «Lada».

А западные дилеры решили ещё больше поэкспериментировать с названиями. Так и появились Lada Signet, Lada Nova и т.д.

Затем, с приходом «восьмёрки», это название перекочевало на багажники переднеприводных автомобилей АвтоВАЗа, и остаётся там до сих пор. Правда, стилистика поменялась.

Так откуда взялось слово «Жигули»? Знатоки географии точно знают, что это название гор на правом берегу Волги в Самарской области. Согласно исследованиям, слово заимствовано из тюркского языка, где «джигули», означает – «запряженный» или «гужевой», из-за того что в этой местности проживали бурлаки.

По другой были, в этой области было много банд разбойников, которые заставляли проплывающих мимо купцов платить им дань. Тех, кто отказывался, подвергали поре горящими розгами. Это называлось «жечь», а самих палачей нарекли «жигулями».

Приложения

Зная стандартные потенциалы окисления различных металлов, можно определить электродвижущую силу, которую создаст гальванический элемент, построенный из этих металлов.

В этом разделе мы применим то, что было сказано в предыдущих разделах, для расчета чистой электродвижущей силы элемента, построенного из других металлов.

В качестве примера применения рассмотрим гальванический элемент из железа (Fe) и меди (Cu). В качестве данных приведены следующие реакции восстановления и их стандартный восстановительный потенциал, то есть при 25ºC и концентрации 1M:

Вера2+(ac) + 2 е– → Вера(s). E1сеть = -0,44 В

Cu2+(ac) + 2 е– → Cu(s). E2сеть = +0,34 В

Требуется найти чистую электродвижущую силу, создаваемую следующим гальваническим элементом:

Вера(s)| Вера2+(ac)(1M) || Cu2+(ac)| Cu(s)

В этой батарее железо окисляется и является анодом гальванического элемента, а медь восстанавливает и является катодом. Потенциал окисления железа равен его восстановительному потенциалу, но противоположен ему, то есть E1Oxd = +0,44.

Чтобы получить электродвижущую силу, создаваемую этим гальваническим элементом, мы добавляем окислительный потенциал железа к восстановительному потенциалу меди:

emf = E1Oxd + E2сеть = -E1сеть + E2сеть = 0,44 В + 0,34 В = 0,78 В.

Понятие об электролизе. Принципиальная схема электролизера.

Гальваника — это осаждение металла или оксида на поверхности изделия для придания ему новых функциональных свойств или улучшения внешнего вида. Гальваника выполняется под действием электрического тока, отсюда возникает понятие «электролиз».

Электролиз с практической точки зрения является комплексом окислительно-восстановительных реакций, протекающих под действием электрического тока в электролите.

Электролит — это среда (для классической гальваники — водный раствор), обладающая ионной электрической проводимостью. Проще говоря — жидкость, способная проводить через себя электрический ток. Электрический ток проводится в основном за счет сольватированных в растворителе ионов. Сольватация является своего рода «растаскиванием» ионов из прочной кристаллической решетки твердого вещества диполями воды. В результате каждый ион становится окружен некоторым количеством молекул воды и в этом виде передвигается либо к положительному, либо к отрицательному электроду.

Когда через электролит пропускается электрический ток, то первоначально происходит направленное движение электронов в металлических проводниках. От анода электроны переходят к катоду, в результате чего на аноде образуется избыточный положительный заряд. При включенной электрической цепи с внешним источником тока на растворимом аноде будет происходить отнятие электронов у атомов металла-основы анода, а на нерастворимом — отнятие электронов у тех анионов, которые находятся в прианодной области. На катоде же появляется избыточный отрицательный заряд за счет скопившихся на нем электронов. К положительному аноду начинают движение противоположно заряженные анионы, а к катоду — катионы. При этом достигнув электродов они могут претерпевать определенные химические превращения.

Проходящий через электролит ток обычно постоянный, хотя иногда он может быть и переменным или изменяться по определенной функции. В любом случае, мы всегда сможем выделить катодный (восстановление) и анодный (окисление) процессы.

Электролиз не обязательно должен происходить только в водных растворах. Существуют также неводные электрохимические системы на основе органических (в основном апротонных) растворителей, солевых расплавов и даже твердых электролитов, однако их применение в промышленности для получения металлических покрытий ограничено, а в случае твердых электролитов — вообще невозможно.

 В гальванике, исходя из вышеприведенной схемы, может быть три варианта организации процесса:1. Электролиз с растворимыми анодами. Металл анода растворяется и его ионы переходят в раствор, а на катоде эти же ионы восстанавливаются и осаждается металлическое покрытие. Примеры такого процесса — цинкование, меднение, никелирование и т.п.

2. Электролиз с нерастворимыми анодами. Анод не растворяется, на нем происходит побочная реакция, например, выделение кислорода. На катоде происходит восстановление металла, ионы которого подтягиваются из электролита. Происходит непрерывное снижение концентрации ионов металла в растворе.

3. Анодирование — получение оксидного покрытия на детали, завешенной в ванну анодом, на катоде идет выделение водорода.Устройство для проведения электролиза называется электролизером. Небольшой лабораторный электролизер принято называть ячейкой, в то время как промышленная установка будет называться гальванической ванной.

Схема простейшего электролизера (рисунок 1 и 2) всегда включает в себя:

  • электролит, через который протекает электрический ток;
  • катод(ы) — покрываемые детали (отрицательный электрический полюс, на котором происходит процесс принятия электронов — восстановления). Катод, на который наносится покрытие также может называться подложкой или основой, а покрытие на катоде — осадком;
  • аноды — противоэлектроды (положительный электрический полюс, на котором происходит процесс отдачи электронов — окисления);
  • источник электрического тока.

В случае нанесения анодного оксидного покрытия, например, на алюминии (процесс анодирования), покрываемые изделия находятся на аноде, а катоды выполняют роль противоэлектродов.

Электролизер может комплектоваться и дополнительным оборудованием:

  • нагреватели;
  • системы перемешивания;
  • системы фильтрации;
  • бортовые отсосы;
  • крышки;
  • датчики технологических параметров (температуры, рН, уровень, потенциал, концентрация компонентов и т.п.), дозаторы и другие средства автоматизации.

Рисунок 1 — Принципиальная схема электролизера

Рисунок 2 — Реальный электролизер (гальваническая ванна блестящего цинкования из щелочного цинкатного электролита).

Источник токов

Существует два типа электрохимических элементов: гальванические и электролитические. Гальваническая клетка использует энергию, выделяемую во время спонтанной окислительно-восстановительной реакции для выработки электроэнергии.

Электролитическая ячейка потребляет энергию от внешнего источника, используя ее, чтобы вызвать непредвиденную окислительно-восстановительную реакцию.

Два типа ячеек

Гальванический элемент, история создания которого официально началась в 18 веке, дал старт развития науки электротехники. Во время проведения экспериментов с электричеством в 1749 году Бенджамин Франклин впервые ввел термин «батарея» для описания связанных конденсаторов. Однако его устройство не стала первой ячейкой. Находки археологов «батареи Багдада» в 1936 году имеют возраст более 2000 лет, хотя точное назначение их до сих пор спорно.

Луиджи Гальвани в честь которого названа гальваническая ячейка, впервые описал «электричество животных» в 1780 году, когда пропускал ток через лягушку. В то время он не знал об этом, но его устройство работало по принципу батареи. Его современник Алессандро Вольта в честь которого названа «вольтовая ячейка» был убежден, что «животное электричество» исходило не от лягушки, а от чего-то другого, он много работал над этим и в 1800 году изобрел первую настоящую батарею — «вольтовую кучу».

Александро Вольт

В 1836 году Джон Фредерик Даниэль, исследуя способы преодоления проблем вольтовой кучи создал свою ячейку. За этим открытием последовало создание ячейки Уильяма Роберта Гроува в 1844 году. Первая аккумуляторная батарея была изготовлена из свинцово-кислотного элемента в 1859 году компанией Gaston Plante, далее появились гравитационная ячейка Калло в 1860 и ячейка Лекланш Жоржа Лекланша в 1866 году.

До этого момента все батареи были мокрого типа. В 1887 году Карл Гасснер создал первую сухую батарею, изготовленную из углеродно-цинковой батареи. Никель-кадмиевая батарея была представлена в 1899 году Вальдмаром Юнгнером вместе с никель-железной батареей. Однако Юнгнер не смог запатентовать ее и в 1903 году изобретатель Томас Эдисон запатентовал свой слегка измененный дизайн.

Русский ученый-физик Василий Петров в 1802 году соорудил крупнейшую гальваническую батарею в мире, дающую напряжение 1500В. Для сооружения потребовалось около 4200 цилиндров из меди и цинка с диаметром 35.0 мм м толщиной 2.5 мм. Батарея была размещена в ящике из красного дерева, обработанного несколькими слоями различных смол. Опыты Петрова положили начало современной электрометаллургии в дуговых печах.

Обратите внимание! Крупный прорыв в гальваническом направлении источников тока произошел в 1955 году, когда Льюис Урри, сотрудник компании «Energizer», представил общую щелочную батарею. 1970-е годы привели к никель-водородной батарее, а 1980-е годы к никель-металлогидридной батарее. Литиевые батареи были впервые созданы еще в 1912 году, однако наиболее успешный тип, литий-ионный полимерный аккумулятор, используемый сегодня в большинстве портативных электронных устройств, был выпущен только в 1996 году

Литиевые батареи были впервые созданы еще в 1912 году, однако наиболее успешный тип, литий-ионный полимерный аккумулятор, используемый сегодня в большинстве портативных электронных устройств, был выпущен только в 1996 году.

Устройство и принцип работы гальванического элемента

Металл, погруженный в раствор электролита, называется электродом.

Электроды — это система двух токопроводящих тел — проводников первого и второго рода.

К проводникам первого рода относятся металлы, сплавы, оксиды с металлической проводимостью, а также неметаллические материалы, в частности графит; носители заряда — электроны.

К проводникам второго рода относятся расплавы и растворы электролитов; носители заряда — ионы.

Устройство, состоящее из двух электродов, называется гальваническим элементом.

Рис. 2. Схема медно-цинкового гальванического элемента

Рассмотрим гальванический элемент Якоби—Даниэля (схема приведена на рис. 2). Он состоит из цинковой пластины, погруженной в раствор сульфата цинка, и медной пластины, погружен­ной в раствор сульфата меди. Для предотвращения прямого взаимодействия окислителя и восстановителя электроды отделены друг от друга пористой перегородкой.

В гальваническом элементе электрод, сделанный из более активного металла, т.е. металла, расположенного левее в ряду напряжений, называют анодом, а электрод, сделанный из менее активного металла — катодом.

На поверхности цинкового электрода (анода) возникает двойной электрический слой и устанавливается равновесие:

Zn0 – 2ē ←→ Zn2+.

В результате протекания этого процесса возникает электродный потенциал цинка.

На поверхности медного электрода (катода) также возникает двойной электрический слой и устанавливается равновесие:

Cu2+ + 2ē ←→ Cu0.

В результате возникает электродный потенциал меди.

Так как потенциал цинкового электрода имеет более отрицательное значение, чем потенциал медного электрода, то при замыкании внешней цепи, т.е. при соединении цинка с медью металлическим проводником, электроны будут переходить от цинка к меди. В результате этого процесса равновесие на цинковом электроде смещается вправо, поэтому в раствор перейдет дополнительное количество ионов цинка. В то же время равновесие на медном электроде сместится влево и произойдет разряд ионов меди.

Таким образом, при замыкании внешней цепи возникают самопроизвольные процессы растворения цинка на цинковом электроде и выделения меди на медном электроде. Данные процессы будут продолжаться до тех пор, пока не выровняются потенциалы или не растворится весь цинк или не высадится на медном электроде вся медь.

Итак, при работе гальванического элемента Якоби—Даниэля протекают следующие процессы:

1. Анодный процесс, процесс окисления:

Zn0 – 2ē → Zn2+.

2. Катодный процесс, процесс восстановления:

Cu2+ + 2ē → Cu0.

3. Движение электронов во внешней цепи.

4. Движение ионов в растворе: анионов SO42– к аноду, катионов Cu2+ к катоду. Движение ионов в растворе замыкает электрическую цепь гальванического элемента.

Суммируя электродные реакции, получим:

Zn + Cu2+ = Zn2+ + Cu.

В результате протекании данной реакции в гальваническом элементе возникает движение электронов во внешней цепи и ионов внутри элемента, т.е. электрический ток. Поэтому суммарную химическую реакцию, протекающую в гальваническом элементе, называют токообразующей реакцией.

Электрический ток в гальваническом элементе возникает за счет окислительно-восстановительной реакции, протекающей так, что окислительные и восстановительные процессы оказываются пространственно разделенными: на отрицательном электроде (аноде) происходит процесс окисления, на положительном электроде (катоде) — процесс восстановления.

Необходимым условием работы гальванического элемента является разность потенциалов электродов. Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента. Она равна разности между потенциалом катода и потенциалом анода элемента:

ЭДС = Eк – Ea . (1)

ЭДС элемента считается положительной, если токообразующая реакция в данном направлении протекает самопроизвольно. Положительной ЭДС отвечает и определенный порядок в записи схемы элемента: записанный слева электрод должен быть отрицательным. Например, схема элемента Якоби—Даниэля записывается в виде:

Zn │ ZnSO4 ║ CuSO4 │ Cu .

Анатомия батарейки

Как же выглядели первые «батарейки»? Собственно, устройство своего изобретения А. Вольта весьма и весьма подробно описал в своём письме сэру Джозефу Бэнксу. Первый же его опыт выглядел следующим образом: Вольта опустил в банку с кислотой медную и цинковую пластинки, а затем соединил их проволокой. После этого цинковая пластина начала растворяться, а на медной стали выделяться пузырьки газа. «Вольтов столб»
— это, можно сказать, стопка из соединённых между собой пластинок цинка, меди и сукна, пропитанных кислотой и сложенных друг на друга в определённом порядке.

В современных «пальчиковых» и прочих батарейках «начинка» несколько сложнее. В корпусе батарейки упакованы химические реагенты, при взаимодействии которых и выделяется энергия, а также два электрода — анод и катод. Реагенты эти разделены специальной прокладкой, которая не позволяет твердым частям реагентов перемешиваться, но при этом пропускает к ним жидкий электролит.

Жидкий электролит реагирует с твёрдым реагентом, в результате чего возникает заряд. На реагенте анода он отрицательный, а на катодном — положительный. Чтобы не произошло нейтрализации зарядов твёрдые части реагента разделены мембраной.

Чтобы можно было «снять» полученный заряд и передать его на контакты, в анодный реагент вставлен токосниматель, который выглядит очень просто — тоненький не очень длинный штырёк. Есть в батарейке и катодный токосниматель, который располагается под оболочкой батарейки. Саму оболочку называют внешней гильзой.

Оба токоснимателя соприкасаются внутри батарейки с анодом и катодом. Схема работы батарейки в результате такова: химическая реакция, разделение зарядов на реактивах, переход зарядов на токосниматели, далее — на электроды и в питаемое устройство.

Гальванический элемент в домашних условиях

Простой источник тока можно сделать и своими руками. Для этого нам потребуется следующий инвентарь:

  1. Пластиковый стакан.
  2. Электролит. В качестве него можно взять соленый раствор, газировку или лимонную кислоту, разведенную в воде.
  3. Пластинки двух разных металлов. К примеру алюминий и медь.
  4. Провода

Процесс изготовления

Берем пластиковый стаканчик и наливаем в него электролит. Не следует наполнять стакан до самых краев. Лучше на 1-2 сантиметра не долить. К металлическим пластинам прикрепите проводники. Далее установите на края нашей емкости пластины из меди и алюминия. Они должны располагаться параллельно друг к другу. Когда все готова можно замерить с помощью вольтметра напряжение.

Подключите прибор и прикоснитесь щупами к контактам нашего источника тока. Держите и не отрывайте их пока на дисплее не высветится напряжение. Обычно оно составляет 0.5-0.7 вольт. Такие цифры показываются в зависимости от электролита. Точнее используемого вещества в его качестве.

Таким образом изготавливается самодельный гальванический элемент.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Раздольная энергия
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: