Проектирование импульсного источника питания с активным ккм. эпизод i

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Как сделать двухполярное питание?

Такой источник необходим для обеспечения работы некоторых микросхем (например, усилителей мощности и НЧ). Отличает двухполярный блок питания следующая особенность: на выходе у него отрицательный полюс, положительный и общий. Для реализации такой схемы требуется применять трансформатор, вторичная обмотка которого имеет средний вывод (причем значение переменного напряжения между средним и крайними должно быть одинаковое). Если нет трансформатора, удовлетворяющего этому условию, можно модернизировать любой, у которого сетевая обмотка рассчитана на 220 вольт.

Удалите вторичную обмотку, только сначала проведите замер напряжения на ней. Сосчитайте число витков и разделите на напряжение. Полученное число — это количество витков, необходимых для вырабатывания 1 вольта. Если вам нужно получить двухполярный блок питания с напряжением 12 вольт, то потребуется намотать две одинаковых обмотки. Начало одной соедините с концом второй и эту среднюю точку подключите к общему проводу. Два вывода трансформатора необходимо соединить с диодной сборкой. Отличие от однополярного источника — нужно применять 2 электролитических конденсатора, соединенных последовательно, средняя точка включается с корпусом устройства.

Простейший самодельный блок питания

Если у вас нет навыков в изготовлении электрических приборов, то лучше начинать с самого простого, постепенно передвигаясь к сложным конструкциям. Состав простейшего источника постоянного напряжения:

  1. Трансформатор с двумя обмотками (первичной – для подключения к сети, вторичной – для подключения потребителей).
  2. Один или четыре диода для выпрямления переменного тока.
  3. Электролитический конденсатор для отсечки переменной составляющей выходного сигнала.
  4. Соединительные провода.

В случае если вы используете в схеме один полупроводниковый диод, то получите однополупериодный выпрямитель. Если применяете диодную сборку или мостовую схему включения, то блок питания называется двухполупериодным. Разница в выходном сигнале – во втором случае меньше пульсаций.

Такой самодельный блок питания хорош только в тех случаях, когда необходимо провести подключение приборов с одним рабочим напряжением. Так, если вы занимаетесь конструированием автомобильной электроники либо ее ремонтом, лучше выбирать трансформатор с выходным напряжением 12-14 вольт. От количества витков вторичной обмотки зависит выходное напряжение, а от сечения используемого провода — сила тока (чем больше толщина, тем больше ток).

Снаббер

Чтобы скомпенсировать выбросы тока и напряжения, неизбежно возникающие при коммутации первичной обмотки трансформатора, применяются демпферные цепи, в англоязычной технической литературе называемые снабберами. Такие цепи могут устанавливаться по питанию (параллельно первичной обмотке трансформатора) либо отдельно на каждый ключ. Исполнение снабберов может быть разным, но наибольшее распространение получили демпферы в виде последовательной RC-цепочки (схема б на рисунке).

Различные схемы демпферов.

Обоснованной методики расчета снаббера не существует. Для этого надо учесть все паразитные индуктивности (обмотки, дорожек, конденсаторов) на множестве частот и для неизвестных волновых сопротивлений. Поэтому все существующие расчеты носят эмпирический характер.

Что такое снаббер или демпфер можете узнать посмотрев видео.

В схемах RCD-снабберов (в и г на рисунке) присутствуют диоды. Они могут быть полезны для ограничения импульсов обратной полярности в схемах с тиристорами и биполярными транзисторами. Если ключи собраны на полевых или IGBT-транзисторах, то смысла в установке вентилей нет – они дублируют диоды, имеющиеся внутри указанных транзисторов.

Емкость конденсатора выбирается в пределах 0,1–0,33 мкФ. В 90+ процентах случаев этого достаточно. Увеличение или уменьшение номинала применяется для ключей, работающих в нестандартных условиях (повышенная частота преобразования и т.п.)

Схемы инверторов

Получившееся выпрямленное напряжение поступает на преобразователь (инвертор). Его выполняют на биполярных или полевых транзисторах, а также на IGBT-элементах, сочетающих свойства полевых и биполярных. В последние годы получили распространение мощные и недорогие полевые транзисторы с изолированным затвором (MOSFET). На таких элементах удобно строить ключевые схемы инверторов. В схемах импульсных блоков питания используются различные варианты включения MOSFET, но в основном применяются двухтактные схемы из-за простоты и возможности наращивания мощности без существенных переделок.

Пуш-пульная схема


Схема пуш-пульного преобразователя.

Пуш-пульный инвертор (push – толкать, pull – тянуть) — пример двухтактного преобразователя. Транзисторные ключи работают на первичную обмотку трансформатора, состоящую из двух полуобмоток I и II. Транзисторы поочередно открываются на заданный промежуток времени. Когда открыт верхний по схеме транзистор, ток течет через полуобмотку I (красная стрелка), когда второй – через полуобмотку II (зеленая). Чтобы избежать ситуации, когда оба ключа открыты (из-за конечной скорости работы транзисторов), схема управления формирует паузу, называемую Dead time.


Управление транзисторами с учетом Dead time.

Такая схема хорошо работает при низком напряжении питания (до +12 вольт). Минусом является наличие выбросов амплитудой, равной удвоенному напряжению питания. Это влечет за собой применение транзисторов, рассчитанных на вдвое большее напряжение.

Мостовая схема

От главного недостатка предыдущей схемы свободна двухтактная мостовая.


Двухтактная мостовая схема инвертора.

Здесь одновременно открывается пара транзисторов T1 и T4, потом Т2 и Т3 (сигнал управления ключами формируется с учетом Dead time). При этом первичная обмотка подключается к источнику питания то одной стороной, то другой. Амплитуда импульсов равна полному напряжению питания, и выбросы напряжения отсутствуют. К минусам относят применение четырех транзисторов вместо двух. Помимо увеличения габаритов БП это ведет к удвоенным потерям напряжения.

Полумостовая схема

На практике часто применяют полумостовую схему инвертора – в определенной мере компромисс между предыдущими двумя схемами.


Полумостовая схема.

В этом случае одна сторона обмотки коммутируется поочередно открывающимися транзисторами Т1 и Т2, а другая подключается к средней точке емкостного делителя С1, С2. Достоинства схемы:

  • в отличие от пушпульной отсутствуют выбросы напряжения;
  • в отличие от мостовой используются только два транзистора.

На другой чаше весов – обмотка трансформатора запитана лишь от половины напряжения питания.

Однотактные схемы

В схемотехнике преобразователей применяются и однотактные схемы – прямоходовые и обратноходовые. Их принципиальное отличие от двухтактных – трансформатор (точнее, его первичная обмотка) служит одновременно накопительной индуктивностью. В обратноходовых схемах энергия накапливается в первичной обмотке во время открытого состояния транзистора, а отдается в нагрузку через вторичную обмотку во время закрытого. В прямоходовых накопление энергии и отдача потребителю происходит одновременно.


Две фазы работы обратногоходового однотактного инвертора.

Виды импульсных блоков питания

С гальванической развязкой.

Высокочастотные сигналы поступают на трансформатор, ответственный за гальваническую развязку цепей. Устройства такого типа имеют более компактный магнитопровод и характеризуются повышенной эффективностью использования. Чаще всего сердечник трансформатора изготавливают из ферромагнетиков, а не из электротехнических сталей, что также позволяет уменьшить размеры элементов.

Без гальванической развязки.

В схеме импульсного БП отсутствует высокочастотный разделительный трансформатор. Питающий сигнал поступает на фильтр нижних частот.

Схема


Импульсный БП состоит из следующих функциональных блоков:

  • фильтр. Не пропускает помехи из сети и обратно (генерируются самим БП);
  • выпрямитель со сглаживающим конденсатором. Обычный диодный мост, дает на выходе почти ровное (с низким коэффициентом пульсаций) постоянное напряжение, равное действующему значению переменного селевого напряжения — 311 В;
  • инвертор. Состоит из быстро переключающихся силовых ключевых транзисторов и управляющей ими микросхемы. На выходе дает прямоугольный переменный ток. Процесс преобразования в инверторе называют широтно-импульсной модуляцией (ШИМ), а микросхему — ШИМ-контроллером. В рабочем режиме реализована обратная связь, потому в зависимости от мощности подключенной к БП загрузки, контроллер регулирует продолжительность открытия транзисторов, то есть ширину импульсов. Также благодаря обратной связи, компенсируются скачки напряжения на входе и броски, обусловленные коммутацией мощных потребителей. Это обеспечивает высокое качество выходного напряжения;
  • импульсный высокочастотный трансформатор. Понижает напряжение до требуемых 12 или 24 В;
  • выпрямитель со сглаживающим конденсатором. Преобразует высокочастотное переменное напряжение в постоянное.

Дроссель переменного тока

Основной элемент сетевого фильтра — дроссель. Его сопротивление (индуктивное) возрастает с увеличением частоты тока, потому высокочастотные помехи нейтрализуются, а ток частотой 50 Гц проходит свободно. Дроссель работает тем эффективнее, чем больше размеры магнитопровода, толщина проволоки и больше витков. Дополнительно установленные конденсаторы улучшают фильтрацию, закорачивая высокочастотные помехи и отводя их на «землю».

Также емкостные сопротивления не позволяют в/ч помехам, генерируемым БП, поступать в сеть. Высокочастотный трансформатор отличается от обычного материалом магнитопровода: используются ферриты или альсифер. Выпрямитель после трансформатора собирается на диодах Шоттки, отличающихся высоким быстродействием.

Существует два способа генерации высокочастотного переменного тока:

  1. однотактная схема. Применяется в БП небольшой мощности — до 50 Вт (зарядки телефонов, планшетов и т.п.). Конструкция простая, но у нее велика амплитуда напряжения на первичной обмотке трансформатора (защищается резисторами и конденсаторами);
  2. двухтактная схема. Сложнее в устройстве, но выигрывает в экономичности (выше КПД). Двухтактная схема делится на три разновидности:
    1. двухполупериодная. Самый простой вариант;
  3. двухполярная. Отличается от предыдущей присутствием 2-х дополнительных диодов и сглаживающего конденсатора. Реализован обратноходовый принцип работы. Такие схемы широко применяются в усилителях мощности. Важная особенность: продлевается срок службы конденсаторов за счет того, что через них протекают меньшие токи;
  4. прямоходовая. Используется в БП большой мощности (В ПК и т.п. устройствах). Выделяется наличием габаритного дросселя, накапливающего энергию импульсов ШИМ (направляются на него через два диода, обеспечивающих одинаковую полярность).

2-тактные БП отличаются схемой силового каскада, есть три модификации:

  1. полумостовая: чувствительна к перегрузкам, потому требуется сложная защита;
  2. мостовая: более экономична, но сложна в наладке;
  3. пушпульная. Наиболее экономична и потому весьма востребована, особенно в мощных БП. Отличается присутствием среднего вывода у первичной и вторичной обмоток трансформатора. В течение периода работает то одна, то другая полуобмотка, подключаемая соответствующим ключевым транзистором.

Стабилизации выходного напряжения добиваются следующими способами:

  • применением дополнительной обмотки на трансформаторе. Это самый простой способ, но и наименее действенный. Снимаемое с нее напряжение корректирует сигнал на первичной обмотке;
  • применением оптопары. Это более эффективный способ. Основные элементы оптопары — светодиод и фототранзистор. Схема устроена так, что протекающий через светодиод ток пропорционален выходному напряжению. Свечение диода управляет работой фототранзистора, подающего сигналы ШИМ-контроллеру.

Таким образом, в данной методике контролируется непосредственно напряжение на вторичной обмотке, при этом отсутствует гальваническая связь с генератором ключевого каскада.

При подключении последовательно с оптопарой стабилитрона качество стабилизации становится еще выше.

Схемы ИБП

Перед выбором схемы ИБП нужно:

  • задать уровень входного напряжения;
  • определить выходной диапазон БП;
  • задать максимальную мощность или ток нагрузки.

С учетом заданных параметров выбирается проект ИБП. Отбор может производиться по типу регулирующих компонентов:

  • биполярные транзисторы;
  • полевые;
  • специализированные микросхемы.

Последние наиболее удобны, поскольку для сборки БП на их основе требуется минимум дополнительных деталей. Их настройка проста и заключается в подборе одного параметра. Типичным представителем такого чипа для устройств бесперебойного питания является UC3842. Однотактные преобразователи нашли применение в условиях лабораторного эксперимента, когда главным критерием являются малые габариты и простота.

Что такое импульсный блок?

Импульсный блок питания – это устройство, которое преобразует (выпрямляет) поступающий от сети ток.

Но также действуют и транзисторные блоки питания.

Отличительная особенность импульсного в том, что на последнем участке цепи ток превращается в импульс с частотной характеристикой 10 кГц.

Позитив:

  • Он стабилизирует питание настолько качественно. Что даже очень чувствительная электроника может работать на таком блоке питания исправно длительное время;
  • Блок почти не нагревается при работе, а его КПД очень высок, что становится ощутимым плюсом при использовании в высокопроизводительных системах большой нагрузки;
  • Система способна работать с очень широким диапазоном входного напряжения, что позволяет избежать перегрузок техники – это основное преимущество, благодаря которому именно данная система имеет наибольшую популярность;
  • Частота входящего тока влияет только на работу трансформатора, то есть значительные перепады частоты не могут оказать существенного негативного влияния на устройство, а способны вывести из строя только один трансформатор;
  • Большинство подобных устройств характеризуются малыми габаритами, весом по сравнению с блоками питания других типов;
  • Финансовая целесообразность – данный тип блока питания стоит существенно дешевле.

Негатив:

  • Потенциальное возникновение импульсных помех – они присутствуют почти всегда в любом таком блоке питания, но существенного влияния на работу системы в целом не оказывают;
  • Подобные блоки питания достаточно сложно регулировать самостоятельно;
  • Так как сеть достаточно сложная, потенциально такой тип цепи менее надежен.

Так как недостатков совсем не много, в настоящее время именно данный тип блока питания наиболее популярен.

Общее устройство и принцип действия

Представленная схема отличается простотой, надежностью и эффективностью. Она может быть изготовлена не только методом навесного монтажа, но и в виде печатной платы. Данная схема на двенадцать вольт является рабочей, требуется лишь заранее рассчитать параметры балластового гасящего конденсатора и подобрать нужное значение тока для конкретного устройства. Практически можно сделать 5,5-вольтовый блок с возможностью увеличения напряжения до 25 В.

Основой устройства служит балластовый конденсатор, гасящий сетевое напряжение. После этого ток попадает в диодный выпрямитель, а второй конденсатор выполняет функцию фильтра. Иногда возникает необходимость быстро разрядить оба конденсатора. С этой целью в схеме предусмотрены резисторы R1 и R2. Еще один резистор R3 используется в качестве ограничителя тока при включении нагрузки.

Расчет балластного конденсатора выполняется до сборки схемы. Для этого используется простая формула С = 3200хI/Uc, в которой I является током нагрузки (А), Uc – сетевым напряжением, С – емкостью конденсатора (мкФ). Чаще всего такие расчеты используются для светодиодов.

В качестве примера можно взять любой прибор с током 150 мА. Это может быть обычная светодиодная лампа. Сетевое напряжение будет 230 В. Таким образом, 3200 х 0,15/230 = 2,08 мкФ. Номинал конденсатора выбирается наиболее близко к расчетному, то есть, его емкость составит 2,2 мкФ, а расчетное напряжение – 400 В.

Такой простейший бестрансформаторный блок не имеет гальванической развязки с питающей сетью. В связи с этим должна быть обеспечена надежная изоляция всех соединений, а само устройство – помещено в корпус из диэлектрического материала.

Блок питания мощностью 20 Ватт.

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!. Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

Вернуться наверх к меню

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Раздольная энергия
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: