Получение
Существует несколько способов получения графена в условиях лаборатории или промышленных комплексов. Наиболее простым является послойное отсоединение от пиролитического графита при помощи механического воздействия на материал. Таким образом получаются высококачественные образцы, которые обладают повышенной активностью заряженных частиц. При использовании данного метода невозможно получать инновационный материал в промышленных масштабах из-за применения высокоточного ручного труда.
Интересно. Альтернативой является воздействие высокотемпературным отщеплением на соединение кремния с углеродом. Таким образом можно получать достаточно большое количество вещества в сжатые сроки. В 2010 году после исследования К. Новоселова и А. Гейма появилась возможность получать большие листы графена, которые образуются за счет осаждения вещества из фазы газа.
Что такое графен
Для начала нужно понять, какая основа, то есть база используется в случае с графеновыми АКБ.
Графеновые батареи, как и литиевые, являются тяговыми, а не стартерными, как на машинах с двигателями внутреннего сгорания.
Графен достаточно интересный и инновационный материал. Благодаря ему потенциально увеличится работоспособность питающих элементов электромобилей от нескольких сотен до тысячи проходимых километров без подзарядки.
Массовому появлению графена человечество обязано двум специалистам. Это Гейм и Новосёлов. Именно они совместными усилиями получили этот материал искусственным путём. В качестве подложки использовался оксид кремния.
В итоге вещество можно охарактеризовать как углеродную плёнку. Её толщина составляет примерно одну миллионную от толщины листа бумаги.
В настоящее время целый ряд компаний и специалистов работают над тем, чтобы получить возможность в крупных объёмах создавать рассматриваемый высокотехнологичный материал. Если этого удастся добиться, это можно будет считать огромным шагом на пути к революции в мире электроники.
На основе графена потенциально можно создать аккумуляторные батареи, компьютерные мониторы, полупроводниковые устройства и многое другое.
Особенности магний-графенового аккумулятора
Первые магниевые батареи были разработаны испанскими учеными в 2017 году. Графеновые аккумуляторы, в которых электролитом выступает магний, более емкие и быстрее заряжаются.
Нередко это изобретение относят к батареям нового поколения. При этом, они на 77% дешевле и на 50% легче литий-ионных аналогов.
Высокая подвижность ионов позволяет зарядить такой аккумулятор за 8 минут. А максимальной емкости достаточно, чтобы электромобиль смог проехать 1000 км.
Принцип действия любых аккумуляторов – химические процессы окисления и восстановления. Магний, который стоит практически в 20 раз дешевле лития, выбран неслучайно.
Магний, как литий, не взрывоопасен при контакте с жидкостью, также его легче утилизировать. Да и запасов его на планете куда больше.
Магний – не идеальное вещество, поэтому и с производством магний-графеновых аккумуляторов возникали сложности. Серьезной проблемой оказался подбор электролита, в котором бы передвигались ионы. Эти работы продолжаются до сих пор.
По мнению ученых, новые магний-графеновые батареи будут иметь емкость в 2,5 раза больше, чем у традиционных литиевых источников питания.
Немецкие автомобильные концерты приняли такую батарею на тестирование. Тест оказался успешным и пошли разговоры об использовании аккумуляторов в промышленности.
Магниево-графеновый аккумулятор для электромобиля
Электромобиль, работающий без использования ископаемых источников топлива, не будет таким же быстрым, как транспортное средство на бензине или «дизеле». Но снижается цена питания и обслуживания. А это уже значимый шаг, который еще более отображает перспективность машин на электричестве.
Компания Graphenano в 2021 году создала предприятие, производящее графеновые аккумуляторы. Их перспективная разработка – полимерные батареи, к сожалению, пока еще не вышла «в свет».
По их мнению, подобные источники питания станут еще безопаснее, более стойкими к возникновению коротких замыканий.
Графен — дело тонкое
— Если верить исследованиям маркетологов, в ближайшие двадцать лет мировой рынок гибкой электроники превысит 300 миллиардов долларов, — рассказывает гендиректор компании «Графенокс», старший научный сотрудник Института проблем химической физики РАН Сергей Баскаков. — В миниатюрных и гибких девайсах металлические провода исключены. Их место займут напечатанные на тонких полимерных подложках проводящие чернила. В современных чернилах для создания электропроводимости используют металлические микро- или наночастицы (серебро, медь, никель и другие). Мы заменили их частицами графена, которые имеют ряд преимуществ: они легче и дешевле, обладают гибкостью и эластичностью, не окисляются со временем. Графеновые чернила применимы для печати NFC и RFID-меток, гибких шлейфов и электрических плат. На их основе можно создавать антистатические, экранирующие и нагревательные покрытия практически на любом материале: полимерах, бумаге, тканях».
Графеновые частицы получают из природного графита, который расщепляется физико-химическими методами вплоть до одинарных слоев. Различные методы дают на выходе разный материал: частицы могут отличаться поперечными размерами (от сотен нанометров до десятков микрометров), толщиной (от одного до нескольких графеновых слоев), степенью окисления, наличию дефектов, примесей и т. д. По словам ученых, для каждого приложения нужно проводить специальную НИОКР и синтезировать графеновые частицы целевой модификации. Например, для модернизации электродов литий-ионных батарей в первую очередь нужны тонкие, хорошо проводящие частицы с большой удельной площадью поверхности. Для армирования бетонов толщина и электропроводность графеновых частиц играет меньшую роль, однако они должны быть модифицированы для лучшего сцепления внутри бетонной смеси.
Использование графенов в качестве армирующих добавок в бетонные и асфальтобетонные смеси — еще одно перспективное направление развития. Внедрение графена в бетон приводит к увеличению его прочности на 30%. На столько же возрастает и скорость набора прочности бетона, что позволяет сократить сроки строительства
— Сейчас мы сотрудничаем с несколькими технологическими стартапами, — рассказывает Максим Рыбин. — Компания «Фэском», резидент «Сколково», производит системы накопления электроэнергии на базе литий-ионных ячеек с добавками микрочастиц графена для увеличения их удельной емкости, количества циклов заряда/разряда и глубины разряда
Команда разработчиков из Электрогорска трудится над созданием смазочных материалов для велосипедов с применением присадок из графеновых частиц, которые уменьшают трение и, как следствие, увеличивают срок службы деталей и период между техосмотрами, что важно для шоссейных велогонок. Графеновые смазки успешно прошли испытание этим летом с участием ведущих российских спортсменов: команда SlowFlowTeam подтвердила эффективность применения графеновой смазки на велотреке, а Петр Винокуров, многократный призер всероссийских соревнований по скоростному спуску, одобрил использование смазки в экстремальных условиях
Вывод на рынок графеновых велосмазок запланирован на следующий год под брендом Bike Therapy.
Использование графенов в качестве армирующих добавок в бетонные и асфальтобетонные смеси — еще одно перспективное направление развития, считает Максим Рыбин. Внедрение графена в бетон приводит к увеличению его прочности на 30%. На столько же возрастает и скорость набора прочности бетона, что позволяет сократить сроки строительства. Интерес к графеновым материалам проявляют производители тепло- и электропроводящих пластиков для энергетических и климатических систем, а также компании, выпускающие антикоррозийные покрытия, добавление графенов в которые улучшает эксплуатационные характеристики на 25–30%.
— Совместно с компанией «Графенокс» мы планируем запустить производство мощностью 500 килограммов графеновых частиц в месяц к середине 2021 года, — говорит Максим Рыбин
— Уже сейчас понятно, что основными нашими клиентами будут инновационные предприятия, которым важно получить конкурентное преимущество на старте. Но для серьезного развития графеновых технологий необходимо участие крупного бизнеса
Российским графеновым компаниям и лабораториям есть чем его заинтересовать. Совместные усилия помогут сгладить кривую хайп-цикла и ускорить выход российской графеновой промышленности на «плато продуктивности».
Как продвигаются разработки графеновых аккумуляторов
Теперь посмотрим, как обстоят дела с разработкой графеновых аккумуляторов в России и других странах.
Компания Graphenano в 2015 году открыла в Испании крупное предприятие (суммарная площадь 7 тыс. кв. м.) по выпуску графеновых аккумуляторов. Завод находится в городе Екла (исп. Yecla). Над его созданием работали специалисты из компании Grabat Energy и национального университета Кордовы. На мощностях предприятия имеется 20 сборочных линий, рассчитанных на выпуск 80 млн ячеек. Первые серийные образцы этих графен─полимерных аккумуляторов предприятие должно было начать выпускать в 2017 году. Но пока никакой информации о них нет.
По заявлению руководства Graphenano, новые графеновые автомобильные аккумуляторы будут пожаробезопасными и защищёнными от короткого замыкания. Полимерный материал, используемый для их производства, был разработан немецким институтом TUV и испанским Декра. В настоящее время некоторые автомобильные концерны Германии уже тестируют продукцию Graphenano на своих моделях.
В США графитовыми аккумуляторами занимались исследователи из Северо-западного Университета под руководством профессора Гарольда Кунга (англ. Harold Kung). Они вели основные работы в направлении увеличения ёмкости графеновых аккумуляторных батарей и скорости их зарядки. Поскольку принцип работы этих АКБ похож на литий─полимерные, их ёмкость существенно зависит от числа ионов, помещающихся в кристаллическую решётку катода или анода. А скорость зарядки сильно зависит от активности передвижения этих ионов. Чтобы увеличить ёмкость графеновых аккумуляторов, исследователи разместили кремниевые кластеры между слоями графена. А скорость заряда они увеличили благодаря формированию отверстий (размер от 10 до 20 нанометров) в пластинах графена. Эти отверстия значительно ускорили передвижение ионов лития.
Исследователи из университета Monash поместили графен в гелевый раствор. Это позволяет удерживать пластины от слипания, а графен находится в стабильном состоянии и может использоваться для изготовления различных конструкций. В состав этого геля входит вода и углерод. Он не дорог в производстве и по способности накопления электрического заряда значительно превосходит литий─ионные аккумуляторы. Всё это делает новую разработку потенциально коммерчески успешной, но серийно выпускаемых образцов здесь также пока нет.
Российские специалисты предлагают использовать в качестве материала катода гипероксидированный графен, а в качестве анода ─ магний. Принцип действия аккумулятора основан на химических процессах окисления и восстановления, характерные для всех типов аккумуляторных батарей. Магний был выбран не случайно. Его стоимость ниже лития примерно в 20 раз. Кроме того, у магния нет некоторых минусов лития. В частности, литий очень активен и бурно реагирует с водой на открытом воздухе, а также его тяжело утилизировать. Кроме того, графеновый аккумулятор с магниевым анодом имеет большую энергетическую ёмкость. Технология добычи магния похожа на получение алюминия. Этот металл также содержится в глинах.
Естественно, что магний имеет и свои минусы по сравнению слитием графеновых аккумуляторов. Одной из наиболее серьёзных проблем является подбор электролита, в котором будут передвигаться ионы между анодом и катодом. Закончены ли сейчас эти работы, пока неизвестно.
В любом случае, графеновые аккумуляторы признаются перспективным направлением во многих странах мира и через некоторое время должны быть выпущены серийные образцы этих АКБ. Если они будут иметь характеристики, соответствующие заявленным, то электромобили смогут серьёзно потеснить на дорогах транспортные средства с двигателями внутреннего сгорания. В результате может быть значительно улучшена экология мегаполисов и снижено потребление углеводородов. Помимо прорыва в автомобилестроении, графеновые аккумуляторы могут сделать более эффективными ветровые и солнечные электростанции. А со временем, возможно, увеличение запаса энергии аккумуляторов гаджетов и уменьшение их размеров.
Другие разработки
Работы по усовершенствованию графеновых аккумуляторов кроме России и США активно ведутся и в других странах.
Учёным Австралии удалось открыть способ удержания графеновых пластин в стабильном состоянии. Ведь их неустойчивость, стремление вернуться в трёхмерное состояние, свойственное обычному графиту, была одной из основных проблем этого материала. Чтобы предотвращать это, учёные поместили пластины графена в водяной гель, что предотвращает их слипание. Кроме того, аккумулятор такой конструкции можно будет заряжать за считанные секунды. Стоимость геля невысока, ведь он состоит всего лишь из воды и углерода.
Практически каждый год в мире появляются новые технологии, которые позволяют более рационально использовать истощающиеся естественные ресурсы. К ним относится и изобретение графена, который в недалёком будущем, возможно, вызовет революционные изменения в транспортной системе благодаря своим уникальным свойствам в большом объёме аккумулировать и сохранять электрическую энергию. Вполне вероятно, каждый желающий сможет с помощью 3 D -принтера сделать графеновый аккумулятор своими руками.
https://youtube.com/watch?v=s2wEFY8zrYA
Удивительные свойства графена
Графен является самым тонким материалом, известным человеку, толщиной в один атом, а также невероятно прочным — примерно в 200 раз прочнее стали. Кроме того, графен является отличным проводником тепла и электричества и обладает интересными способностями поглощения света. В целом графен характеризуется как материал с наивысшей подвижностью электронов среди всех известных материалов. Графеновый слой можно представить, как одну молекулу в которой электроны без преград передвигаются между ее границами – таким образом графеновый проводник способен проводить электричество практически без потерь.
Графен – легкий, он весит всего 0,77 миллиграмма на квадратный метр. Поскольку это один 2D-лист, он имеет самую высокую площадь поверхности из всех материалов.
Листы графена являются гибкими, и фактически графен является наиболее растяжимым кристаллом — вы можете растянуть его до 20% от его первоначального размера, не разбивая его. Наконец, идеальный графен также очень непроницаем, и даже атомы гелия не могут пройти через него.
Он также считается экологически чистым и устойчивым, с неограниченными возможностями для многочисленных применений. Это действительно материал, который может изменить мир с неограниченным потенциалом для интеграции практически в любую отрасль.
Когда листы графена предоставлены сами себе, они будут складываться и образовывать графит, который является наиболее стабильной трехмерной формой углерода при нормальных условиях.
http://www.zr.ru/content/news/904019-ehlektromobil-fisker-emoion-po/http://3batareiki.ru/akkumulyatory/avtomobilnye-akkumulyatory/grafenovyj-akkumulyator-sovremennye-tehnologiihttp://pikabu.ru/story/grafen_v_massyi_ili_kak_zaryadit_yelektromobil_za_10_minut_na_1000_km_2947867http://naukatehnika.com/grafenovyj-akkumulyator-perevorot-v-mire-texnologij.html
Что такое графен
Для начала давайте скажем несколько слов о таком материале как графен. Данный материал был искусственно получен еще в 2004 году российскими учеными и представляет из себя пленкообразную структуру, формированную из атомов углерода.
Если сказать по-простому, то графен – это плоскость графита, отделенная от общей структуры материала. При этом атомы расположены, так что формируется шестигранная кристаллическая решетка.
При этом образованное вещество настолько плотное, что обладает повышенной степенью жесткости и колоссальным запасом теплопроводности.
При этом электроны свободно могут перемещаться по структуре пленки, что открывает широкие перспективы для внедрения нового материала в полупроводниковые схемы.
Графен и аккумуляторы
Первой областью, где было принято решение использовать графен – это производство автомобильных аккумуляторов.
В первых опытах графен соединяли с литием, но как показала практика, это оказалось неправильным решением. А все потому, что литий — это крайне агрессивное вещество, и при контакте с водой литий взрывается.
Поэтому такие модификации аккумуляторов отказались устанавливать на электромобили, ведь в случае ДТП и повреждения аккумуляторной батареи была очень высокая вероятность возгорания.
Так же для производства таких батарей нужно было большое количество лития, а это дорогой металл.
Поэтому было принято решение искать альтернативу литию и нашлось сразу два варианта:
1. Американская модель. Согласно ей, источником реакции выступает уже кобальт-литий и составной катод из пластин кремния и графена.
2. Российская модель. Где используется магний-графеновая модификация, где анод из литиевой соли успешно заменили на оксид магния (гораздо более распространенное и дешевое вещество).
Но несмотря на различные подходы преимущества и недостатки у графеновых аккумуляторов идентичные.
Плюсы и минусы графеновых аккумуляторов
Если мы с вами сравним классические литий-ионные аккумуляторы с графеновыми, по последние наделены следующими преимуществами:
— Графен производится из легкодоступного и дешевого сырья.
— Производимый материал очень легкий. Так один квадратный метр графена весит всего лишь 1 грамм, а это позволяет в значительной степени снижать массу аккумулятора.
— Экологи могут спать спокойно, так как графен экологически чист.
— Графен обладает повышенными показателями прочности и водонепроницаемости.
— Поврежденные участки поверхности легко восстанавливаются.
— Проводимость графена существенно выше, чем у любого другого проводника (конечно, на данный момент).
— Повышенная удельная емкость. Например, автомобиль, у которого установлена графеновая батарея способен проехать на одном заряде до 1 тыс. километров.
— Емкость графеновых аккумуляторов не снижается по причине частых циклов разряд-заряд.
— Время полной зарядки составляет всего 8 минут.
Как видите плюсов просто вагон и маленькая тележка, но есть и свои минусы, а именно:
— У графена довольно низкая плотность, поэтому пока есть существенные ограничения в использовании. Например, сотовый телефон с графеновой батареей будет габаритным.
Как устроен графеновый аккумулятор
На самом деле графеновый аккумулятор по своему строению мало чем отличается от строения литий-ионной батареи с твердым электролитом. Единственное, что в случае с графеном катод выполнен из угольного кокса, по причине того, что его хим. состав приближен к чистому углероду, а графит заменен на графен.
Для того, чтобы повысить емкость батареи инженеры добавили между слоями графена участки из кремния. А для увеличения скорости зарядки в пластинах графена проделали небольшие отверстия по 15-20 нанометров в диаметре.
Вот и все, в остальном это обычная батарейка.
Преимущества и недостатки
Чтобы сделать определённые выводы про графеновые аккумуляторы, стоит взглянуть на их плюсы и минусы.
Да, это перспективная технология. Да и имеющиеся достоинства об этом наглядно говорят. Хотя и без недостатков здесь не обошлось. Даже в условиях, когда массово батареи ещё даже не начали выпускать.
Если говорить про плюсы и минусы, которыми характеризуются графеновые аккумуляторы, то на эти АКБ стоит взглянуть со всех сторон.
Для начала о сильных качествах перспективной технологии:
Батареи имеют небольшой вес. Они значительно легче в сравнении со свинцово-кислотными аналогами или другими источниками питания, используемыми в автомобилях. На 1 квадратный метр графена приходится всего 0,77 грамма веса.
Высокие показатели проводимости. В плане этой характеристики графен в разы лучше, чем ряд других полупроводниковых материалов.
Прочность и водонепроницаемость. Также важные характеристики, учитывая условия эксплуатации автомобилей и прочего транспорта, где такие АКБ могут использоваться.
Экологичность. В отличие от свинца и жидкого электролита, АКБ на основе графеновой технологии не будут загрязнять окружающую среду
Это решение ещё одной важной современной проблемы.
Удельная ёмкость. Отличные показатели
Потенциально графеновые батареи способны демонстрировать около 1000 Вт/ч на 1 кг.
Возможность регулировки свойств. Это достигается за счёт сочетания и комбинирования с графена с другими используемыми материалами.
Доступность сырья. В качестве сырья для получения графена используется графит. А это распространённый, доступный и недорогой материал.
Но не всё так радужно. Технология имеет ряд недостатков.
Исследователи говорят, что из-за плотности сделать АКБ компактными невозможно. Поэтому перспективы использования технологии в мобильных устройствах сомнительные. Батареи получаются массивными. Специалисты пытаются решить этот вопрос. Но пока ни одного серийного образца не выпустили.
С позиции автомобильной сферы всё намного интереснее. Потенциальный переход на графеновую технологию способен увеличить пробег актуальной Tesla Model S с 400 до 1000 км. без подзарядки.
Электромобиль Tesla Model S
На саму подзарядку батареи потенциально достаточно потратить 10-15 минут. Но при условии наличия мощной зарядной станции. Специалисты уверены, что такой вопрос решается довольно легко.
Проблема в литии, который также применяется при создании графеновых источников питания. Этого вещества в природе не так много. Полностью удовлетворить потребности автомобильной отрасли не получится. Поэтому ведутся работы над тем, чтобы вместо лития использовать магний.
Как улучшить характеристики существующих аккумуляторов
В области аккумуляторов обычные материалы для аккумуляторных электродов (и перспективные) значительно улучшаются при добавлении графена. Графеновая батарея может быть легкой, долговечной и подходящей для накопления энергии большой емкости, а также для сокращения времени зарядки. Это продлит срок службы батареи, что связано с количеством углерода, который нанесен на материал или добавлен к электродам для достижения проводимости, а графен добавляет проводимости, не требуя количества углерода, которое используется в обычных батареях.
Графен может улучшить такие свойства батареи, как плотность энергии и форму, различными способами. Так литий-ионные аккумуляторы (и другие типы аккумуляторных батарей) могут быть улучшены путем введения графена в анод аккумулятора и использования проводимости материала и характеристик большой площади поверхности для достижения морфологической оптимизации и производительности.
Также было обнаружено, что создание гибридных материалов также может быть полезным для улучшения качества батареи. Например, гибрид катализа оксида ванадия (VO2) и графена может быть использован на литий-ионных катодах и обеспечивает быструю зарядку и разрядку, а также большую стойкость цикла зарядки. В этом случае VO2 обладает высокой энергоемкостью, но плохой электрической проводимостью, что можно решить, используя графен в качестве своего рода структурной «основы», на которой можно присоединить VO2- создавая гибридный материал, который обладает как повышенной емкостью, так и превосходной проводимостью.
Исследователи ищут новые типы активного электродного материала, чтобы вывести батареи на новый уровень высокой производительности и долговечности и сделать их более подходящими для больших устройств. Наноструктурированные материалы ионно-литиевых батарей могут обеспечить хорошее решение. По последним данным исследователи из Венского университета и международные ученые разработали новый наноструктурированный анодный материал для ионно-литиевых батарей, который увеличивает емкость и срок службы батарей.
2D/3D нанокомпозит на основе смешанного оксида металла и графена, разработанный двумя учеными и их командами, как утверждается, серьезно улучшает электрохимические характеристики литий-ионных аккумуляторов. Основанный на смешанном мезопористом оксиде металла в сочетании с графеном, этот материал может обеспечить новый подход к более эффективному использованию батарей в больших устройствах, таких как электрические или гибридные транспортные средства. Новый электродный материал обеспечил значительно улучшенную удельную емкость с беспрецедентной обратимой циклической стабильностью в течение 3000 обратимых циклов зарядки и разрядки даже при очень высоких режимах тока до 1280 миллиампер. Для сравнения, современные литий-ионные аккумуляторы теряют свою эффективность после примерно 1000 циклов зарядки.
Устройство графенового аккумулятора. Расщепленный кристалл стремится снова стать объемным. Ученым удается сдерживать двухмерную структуру и заставить работать в виде гальванического элемента. Стабильность зависит от подобранной электронной пары. Устройством аккумулятор напоминает литий-ионные, но вместо графитового слоя внедрен графеновый. Российские исследователи заменили анод оксидом магния. Композиция дешевле, меньше нагревается аккумулятор и уменьшается опасность возгорания.
Устройство графенового аккумулятора
Как и обычные свинцово-кислотные автомобильные АКБ, графеновые аккумуляторы работают на базе электрохимических процессов. Естественно, что в основе здесь лежит другая реакция, нежели в кислотном электролите. По устройству графеновые аккумуляторы больше всего похожи на литий-полимерные аккумуляторные батареи. На сегодняшний день появились две разных технологии получения графеновых аккумуляторов.
В первом случае предлагается использовать в качестве катода чередующиеся пластины графена и кремния, а в качестве анода LiCoO2 (кобальтат лития). Во втором случае LiCoO2 предлагается заменить на оксид магния, который дешевле. На схеме ниже можно посмотреть схематическое отображение работы графенового аккумулятора.
Среди преимуществ графенового аккумулятора можно отметить следующие:
- Графеновые аккумуляторы имеют значительно меньший вес, чем свинцово-кислотные или батареи иного типа. Масса одного квадратного метра графена составляет 0,77 грамма;
- Высокая проводимость, которая во много раз превышает современные полупроводниковые материалы;
- Имеют высокую прочность и водонепроницаемость;
- Не загрязняют окружающую среду;
- Высокая удельная ёмкость. У графеновых аккумуляторов она может достигать 1000 Вт/ч на 1 килограмм;
- Их свойства можно регулировать благодаря сочетанию графена с другими материалами;
- Довольно легко устранить повреждения;
- Исходное сырьё для графеновых аккумуляторов стоит недорого, поскольку графен распространён в природе.
Есть и ряд проблем. Как говорят некоторые исследователи, плотность графеновых аккумуляторов в настоящее время не позволяет использовать их в мобильных гаджетах. Они получаются слишком большими для этого. Ведутся работы над уменьшением их размера, но серийного рабочего образца пока ещё не существует.
А вот в сфере автомобилестроения графеновые аккумуляторы имеют хорошие перспективы уже сейчас. Исследования показали, что использование графеновой аккумуляторной батареи на электромобиле Tesla Model S может увеличить пробег с 300-400 до тысячи километров. При этом на зарядку графенового автомобильного аккумулятора потребуется 5-10 минут. Для этого нужно будет оснастить АЗС мощными зарядными станциями, но это вполне решаемая проблема.
Поскольку потенциальных покупателей современных электромобилей часто отпугивает малый пробег и длительное время заряда, графеновые аккумуляторы в этой сфере будут очень востребованы. Они вполне могут решить эти проблемы и поднять популярность электромобилей. Здесь есть другая проблема, которая заключается в использовании лития в графеновых АКБ. Он бурно реагирует с водой и в природе его недостаточно для нужд мирового автомобилестроения. Поэтому специалисты стали вести разработки батарей, где вместо лития используется магний.
Достоинства и недостатки
К основным преимуществам данных АКБ следует отнести:
- уменьшенный вес изделия, за счет применения легких металлов;
- с использованием современных технологий удалось добиться создания источников питания с малыми размерами;
- повышенное значение внутренней проводимости;
- увеличенный срок службы;
- повышенное значение внутренней емкости и устойчивости к износу;
- имеют возможность регулировки основных параметров;
- сравнительно малая стоимость;
- распространенность кристаллов углеводородов в природе.
К минусам при использовании графеновых АКБ производители относят:
- Имеют плотность не пригодную для питания мобильной электроники. Аккумулятор, изготовленный для переносных гаджетов, будет иметь относительно большие размеры.
- Малое число энергозаправочных станций для графеновых батарей.
- В составе некоторых электродов при изготовлении применяется литий, который является редким металлом.
Как продвигаются разработки графеновых АКБ
Увы, но на сегодняшний день массовое производство подобных изделий так и не налажено. Испанская фирма Graphenano, впервые сумевшая разработать прототип инновационного источника питания, заявила, что при тестировании устройства удалось проехать без подзарядки порядка 1000 км, а сам процесс восстановления ёмкости занимает 7 минут.
Изначально планировалось начать выпуск таких АКБ в 2021 году, но на сегодня эти планы так и остались нереализованными – разработчики всё ещё работают над доведением технологий до уровня, достаточного для массового производства продукта. Инженеры Graphenano утверждают, что их графеновые аккумуляторы будут пожаро- и электробезопасными.
Многие европейские автоконцерны заявили о тестировании испанских батарей.
Австралийские учёные из университета Monash стремятся стабилизировать графеновые пластины, переводя их в гелеобразное состояние. Это, по их мнению, позволит избежать слипания графеновых плёнок, а также заряжать такие батареи буквально за несколько секунд. Гелевый раствор, состоящий, кроме кремния, из очищенной воды, получать не так уж сложно, но пока дело не дошло даже до тестирования прототипа.
В России разработчики идут по пути замены лития магнием, но до серийных образцов дело пока тоже не дошло. Так что на сегодня автомобиль с графеновым аккумулятором – это пока что мечта.
Графеновый аккумулятор – что это?
Прежде чем углубиться в тему графеновых аккумуляторов, стоит быстро вспомнить, что такое графен и как он работает.
Вкратце, графен представляет собой совокупность атомов углерода, тесно связанных в гексагональную или сотовую структуру. Что делает графен таким уникальным, так это то, что данная структура имеет толщину всего в один атомный слой, что делает графеновый слой двумерным.
Эта двумерная структура обладает очень интересными свойствами, включая превосходную электро и теплопроводность, высокую гибкость, прочность и малый вес. Что нас особенно интересует, так это проводимость электричества и тепла, которая на самом деле превосходит медь — самый проводящий металлический элемент.
Суперконденсаторы обеспечивают работу аккумуляторов, которые дольше служат и заряжаются практически мгновенно
Когда дело доходит до аккумуляторов, возможности графена могут быть использованы разными способами. Идеальное использование графена в качестве батареи — это «суперконденсатор». Суперконденсаторы накапливают ток точно так же, как и обычная батарея, но могут невероятно быстро заряжаться и разряжаться.
Нерешенный проблема с графеном заключается в том, как экономически массово изготовить сверхтонкие листы для использования в батареях и других технологиях. Затраты на производство в настоящее время чрезмерно высоки, но исследования помогают сделать графеновые батареи более доступными.
Итог
Если подытожить, то можно сказать, что аккумуляторные технологии не стоят на месте, да и резких скачков не происходит. Но постепенный и очень уверенный прогресс всё же идёт. Не стоит ожидать от графена каких-то магических свойств. Графен не приведёт к революционному скачку в развитии батарей и уж точно не заменит технологию литиевых аккумуляторов, а только дополнит её. Думаю, не зря Илон Маск делает ставку именно на литиевые батарейки. Tesla не просто так вкладывает огромные средства в развитие именно литиевых аккумуляторов.
Что ж, нам остаётся только запастись терпением и ждать, когда технологии станут более совершенными и батареи окончательно избавятся от своих последних слабых мест!