Что такое проводники и диэлектрики
Проводники это вещества, имеющие в своей структуре массу свободных электрических зарядов, способных перемещаться под воздействием внешней силы по всему объёму материала.
К группе проводников в электростатическом поле относят металлы и их соединения, некоторые виды электротехнического угля, растворы солей (кислот, щелочей), ионизированные газы.
Лучшим проводящим материалом считается металл, например, золото, платина, медь, алюминий. К неметаллическим веществам, проводящим ток, относится углерод.
Проводник
Диэлектрики – вещества, противоположные по своим свойствам проводникам. При отсутствии нагревания заряженные частицы в нейтральном атоме тесно взаимосвязаны и не могут осуществлять движения в объеме материала. В связи с этим электрический ток в непроводнике протекать не может.
Диэлектрик
К материалам, непроводящим электрический ток, относят: керамику, резину, бумагу, стекло, фарфор, смолу, сухую древесину. Лучшим диэлектриком считается газ. Качества диэлектриков зависят от температуры и влажности среды, в которой они находятся.
Проводники и диэлектрики активно используют в электротехнической области. Пример – материалом, из которого производят провода (кабели), служат проводники, изготовленные из металла. Изолирующие оболочки для них производят из диэлектриков – полимеров.
Свойства материалов
Лучшими считаются проводники, сырьем для производства которых послужило серебро, золото или платина. Повсеместное их использование ограничивается только большой стоимостью материала. Такие изделия нашли применение в оборонной и космической промышленности
В этих сферах важно обеспечение самого высокого качества оборудования, независимо от его стоимости
Гораздо шире область применения медных и алюминиевых материалов. Невысокая стоимость и отличные проводящие качества позволили использовать их во многих отраслях хозяйствования.
В диэлектриках повышение температуры может приводить к возникновению свободных электрических зарядов. Это электроны, оторвавшиеся от ядра из-за температурных колебаний. Обычно это небольшое количество свободных зарядов. Но существуют изоляторы, в которых это число достигает существенных размеров. В этом случае изоляционные качества диэлектрика ухудшаются.
Обратите внимание! Надежным считается диэлектрик, если возникающий в нём небольшой ток утечки не мешает работе всей системы. Лучшим диэлектриком считается абсолютный вакуум, а также полностью очищенная вода
Но таковых в природе не найти, а создать их искусственным путём очень сложно. Включение в жидкость любой примеси обеспечивает ей проводящие качества
Лучшим диэлектриком считается абсолютный вакуум, а также полностью очищенная вода. Но таковых в природе не найти, а создать их искусственным путём очень сложно. Включение в жидкость любой примеси обеспечивает ей проводящие качества.
Разница между Проводником, Полупроводником и Изолятором
Принципиальное различие между Проводником, Полупроводником и Изолятором зависит от их уровня проводимости. Проводники — это материалы, которые обеспечивают легкое протекание электрического тока, следовательно, имеют высокую проводимость, Полупроводники — это материалы, которые обладают умеренной проводимостью, тогда как изоляторы являются материалами, которые препятствуют прохождению заряда через них, и тем самым имеют низкую проводимость. Проводимость твердых веществ является основным фактором, который отличает эти три материала и различия в их проводимости объясняет Теория электронных зон. Кроме того, проводники — имеют очень низкое сопротивление, полупроводники — чистые полупроводники имеют очень высокое сопротивление, а изоляторы — имеют чрезвычайно высокое сопротивление. Однако, существуют некоторые другие различия между Проводником, Полупроводником и Изолятором.
Зонная теория проводимости
Электроны вращаются вокруг положительного ядра отдельного атома на допустимых уровнях энергии, как показано серыми линиями слева на диаграмме ниже. В большом наборе атомов, например металлической проволоке или полупроводниковом кристалле, энергетические уровни реорганизуются в две зоны. Зона проводимости — это зона высших энергетических уровней электронов, а валентная зона — это зона нижних энергетических уровней электронов. В энергетической «щели» между зонами электроны не могут существовать.
С левой стороны расположены горизонтальные линии, которые располагаются ближе друг к другу при увеличении уровней энергии
Проводимость — это движение электронов в твердом теле. Для существования проводимости электроны должны свободно перемещаться в зоне проводимости и должны быть пространства в энергетических зонах для перемещения электронов.
Проводники
В проводнике отсутствуют запрещенные зоны между валентной и проводящей зонами. В некоторых металлах зоны проводимости и валентности частично перекрываются. Это означает, что электроны могут свободно перемещаться между валентной зоной и зоной проводимости.
Зона проводимости заполнена только частично. Это означает, что есть места для перемещения электронов. Когда электроны для валентной зоны движутся в зону проводимости, они могут свободно двигаться. Это позволяет проводнику проводить электрический ток.
Зоны в проводниках
Изоляторы
Изолятор имеет большой зазор между валентной зоной и зоной проводимости. Валентная зона заполнена, так как никакие электроны не могут подняться до зоны проводимости. В результате зона проводимости становится пустой. Поскольку в зоне проводимости изолятора нет электронов, а в этой зоне проводимости могут легко перемещаться только электроны, материал не может проводить электрический ток.
Зоны в изоляторах
Полупроводники
В полупроводнике зазор между валентной зоной и зоной проводимости меньше. При комнатной температуре достаточно энергии для перемещения некоторых электронов из валентной зоны в зону проводимости. Это позволяет иметь некоторую проводимость. Повышение температуры увеличивает проводимость полупроводника, потому что больше электронов будет иметь достаточно энергии для перемещения в зону проводимости.
Зоны в полупроводниках
Разница между изоляторами и полупроводниками обусловлена небольшим количеством примесей, добавляемых в полупроводник, что влияет на энергетические зоны. Этот процесс называется легированием.
Полупроводниковые материалы.
Источник
Проводники и изоляторы: сравнительная таблица
Проводники | Изоляторы |
Проводники — это материалы, которые обеспечивают свободный поток электронов от одного атома к другому. | Изоляторы не позволят освобождать электроны от одного атома к другому. |
Проводники проводят электричество из-за наличия свободных электронов в них. | Изоляторы изолируют электричество из-за тесно связанных электронов, присутствующих в атомах. |
Эти материалы могут пропускать через них электричество. | Изоляционные материалы не могут пропускать через них электрический ток. |
Атомы не могут крепко удерживать свои электроны. | Атомы имеют тесно связанные электроны, тем самым неспособные хорошо передавать электрическую энергию. |
Материалы, которые являются хорошими проводниками, обычно имеют высокую проводимость. | Хорошие изоляционные материалы обычно имеют низкую проводимость. |
В основном металлы — это хорошие проводники, такие как медь, алюминий, серебро, железо и т. Д. | Обычные изоляторы включают резину, стекло, керамику, пластик, асфальт, чистую воду и т. Д. |
Что такое полупроводник
Полупроводник по обозначению – вещество, электрическая проводимость которого меньше, чем у металла, и больше, чем у диэлектрика.
Полупроводники
Отличие полупроводника в том, что его электропроводность зависит от температурного режима и объема примесей в составе. Материал обладает характеристиками, как проводящими, так и диэлектрическими.
При увеличении температуры электропроводность вещества растёт, а уровень сопротивления падает. При уменьшении температуры сопротивление стремится к бесконечности.
Благодаря своим уникальным свойствам, полупроводники применяются во многих отраслях промышленности: это и маломощные SMD на печатных платах, и устройства высокой мощности, например, тиристоры в силовой преобразовательной технике.
Презентация на тему Проводники и диэлектрики По электрическим свойствам уровню подвижности заряженных частиц вещества деление проводники диэлектрики полупроводники. Транскрипт
2
Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники
3
Проводники и диэлектрики все металлы Имеются заряженные частицы (заряды частиц = свободные заряды) Способные перемещаться внутри проводника под действием электрического поля Проводники Диэлектрики Состоят из нейтральных в целом атомов или молекул Заряженные частицы связаны друг с другом и не могут перемещаться под действием поля по всему объему тела
4
Проводники и диэлектрики Свободные заряды – заряженные частицы одного знака, способные перемещаться под действием электрического поля Не могут возникнуть, если энергия связи электрона со своим атомом велика по сравнению с энергией взаимодействия с соседними атомами вещества СВЯЗАННЫЕ ЗАРЯДЫ
5
Проводники и диэлектрики — вещество, в котором свободные заряды могут перемещаться по всему объему ПРОВОДНИК металлы растворы солей, кислот, щелочей Влажный воздух плазма Тело человека
6
Проводники В металлах носители свободных зарядов = электроны При образовании металла из нейтральных атомов атомы взаимодействуют друг с другом электроны внешних оболочек атомов полностью утрачивают связи со своими атомами и становятся собственностью всего проводника в целом положительные ионы окружены отрицательно заряженным газом из электронов (взаимодействие кулоновское)
7
Проводники электрические заряды неподвижны! поле внутри проводника = 0 в проводнике – свободные заряды существовал бы электрический ток E 0 иначе НЕТ ТОКА – НЕТ И ПОЛЯ!!!
8
Проводники заряженный незаряженный, помещенный во внешнее электрическое поле ПРОВОДНИК ВНУТРИ E = 0 (поле отсутствует)
9
Проводники уничтожение электростатического поля в проводнике Электрическое поле Проводящий шар Сначала возникнет электрический ток, так как поле внутри шара вызывает перемещение электронов Части шара заряжаются по-разному: Левая – отрицательно; Правая – положительно (явление электростатической индукции) Эти заряды на поверхности проводника создают электрическое поле, которое накладывается на внешнее поле и компенсирует его
10
Проводники уничтожение электростатического поля в проводнике Линии электростатического поля вне проводника перпендикулярны его поверхности – иначе по поверхности бы протекал электрический ток
11
Диэлектрики — вещество, содержащее только связанные заряды
12
Диэлектрики — вещество, содержащее только связанные заряды ДИЭЛЕКТРИК
13
Диэлектрики — разноименные заряды, входящие в состав атомов (или молекул), которые не могут перемещаться под действием электрического поля независимо друг от друга СВЯЗАННЫЕ ЗАРЯДЫ
14
Диэлектрики полностью отсутствуют!!! СВОБОДНЫЕ ЗАРЯДЫ диэлектрик практически не проводит электрический ток ХОРОШИЙ ИЗОЛЯТОР!!!
15
Диэлектрики ГАЗЫ ДИЭЛЕКТРИКИ НЕКОТОРЫЕ ЖИДКОСТИ НЕКОТОРЫЕ ТВЕРДЫЕ ТЕЛА дистиллированная вода, бензол Стекло, фарфор, слюда
16
Диэлектрики в соответствии со структурой их молекул ДИЭЛЕКТРИКИ деление полярные неполярные
17
Диэлектрики (полярные)
18
Диэлектрики (неполярные) В неполярных диэлектриках электростатическое поле сначала поляризует молекулы, растягивая в разные стороны положительные и отрицательные заряды, а затем поворачивает их оси вдоль напряженности поля
19
Диэлектрики — процесс ориентации диполей или появление под действием внешнего электрического поля ориентированных по полю диполей ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКА
20
Диэлектрики — число, показывающее, во сколько раз напряженность электростатического поля в однородном диэлектрике меньше, чем напряженность в вакууме ОТНОСИТЕЛЬНАЯ ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ СРЕДЫ
21
Диэлектрики Уменьшение напряженности электростатического поля в диэлектрике приводит к тому, что сила взаимодействия точечных зарядов q 1 и q 2, находящихся в диэлектрике на расстоянии r друг от друга, уменьшается в ε раз:
22
Полупроводники — вещество, в котором количество свободных зарядов зависит от внешних условий (температура, напряженность электрического поля) ПОЛУПРОВОДНИК
Виды проводников
Состояние проводящих электрический ток материалов может быть твердым, жидким, газообразным.
Твёрдые – это группы металлов, их сплавов и некоторые модификации углерода. Металлы хорошо проводят тепло, электроэнергию.
Жидкие – это расплавленные металлы и электролиты. При невысокой температуре жидким проводником может быть ртуть или галлий. Температура плавления остальных элементов слишком высока.
Течение тока по металлу, имеющему твёрдое или жидкое состояние, происходит посредством движения свободных электронов. Благодаря этому, его электропроводность получила название электронной, а само вещество называют проводником первого рода.
Проводник второго рода (электролит) – это кислотный, щелочной, солевой раствор и расплав ионных соединений. В нём одновременно с движением тока переносятся молекулы (ионы), поэтому со временем структура электролита меняется, а на электродах осаживается продукт электролиза.
В электрическом поле низкой напряженности любой газ и пар не проводят ток. Но в случае достижения напряженностью максимальной критической отметки, когда начинаются ударная и фото-ионизация, газ может стать проводником с электронной и ионной электропроводностью. Когда на единицу объема будет приходиться одинаковое число электронов и положительных ионов, газ с сильной ионизацией станет уравновешенной, электропроводящей субстанцией, именуемой плазмой.
Потенциал электрического поля. Разность потенциалов
Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.
Обозначение – \( \varphi \), единица измерения в СИ – вольт (В).
Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.
Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:
Обозначение – \( \Delta\varphi \), единица измерения в СИ – вольт (В).
Иногда разность потенциалов обозначают буквой \( U \) и называют напряжением.
Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:
Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки
В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность
В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.
Потенциал поля точечного заряда \( q \) в точке, удаленной от него на расстояние \( r \), вычисляется по формуле:
Для наглядного представления электрического поля используют эквипотенциальные поверхности.
Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (\( r =R \), где \( R \) – радиус шара). Напряженность поля внутри шара равна нулю
Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.
Свойства эквипотенциальных поверхностей
- Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
- Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.
В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.
Разность потенциалов и напряженность связаны формулой:
Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:
Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.
Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил
Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.
Алгоритм решения таких задач:
- установить характер и особенности электростатических взаимодействий объектов системы;
- ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
- записать законы сохранения и движения для объектов;
- выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
- составить систему уравнений и решить ее относительно искомой величины;
- проверить решение.
Что такое диэлектрик
Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.
Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.
Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.
Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.
Звукоизоляция
Звукоизоляционные и шумоизоляционные защищают помещение от шума, проникающего в жилое здание извне. Они являются необходимыми как при строительстве частного дома, так и при самостоятельном капитальном ремонте квартиры. Современные пленки делятся на:
- Акустические;
- Звуко-прокладочные.
Ключевым отличием между ними является их назначение. Акустические помогают улучшить слышимость внутри конкретного помещения, а прокладочные устраняют проблему шума улицы от авто и т. д. Такие свойства обеспечиваются определенной фактурой и конструкцией плит. Они могут быть представлены в виде минеральной ваты или пенопласта, где, с одной стороны, мягкая структура, а с другой – жесткий отражающий лист (например, алюминиевый или асбестоцементный). Сейчас также производятся полимерные пленки, которые имеют мембранную структуру. Они известны комбинированными свойствами за счет мягкого внутреннего слоя и пористого наружного, которые поглощают звук из помещения и отражают частоты с улицы.
Описание диэлектриков
Диэлектрики также принято называть электроизоляционными веществами.
Все электроизоляционные вещества имеют следующую классификацию:
- В зависимости от агрегатного состояния диэлектрики могут быть жидкими, твердыми и газообразными.
- В зависимости от способы получения — естественными и синтетическими.
- В зависимости от химического состава – органическими и неорганическими.
- В зависимости от строения молекул – нейтральными и полярными.
К ним относятся газ (воздух, азот, элегаз), минеральное масло, любое резиновое и керамическое вещество. Данные вещества характеризуются способностью к поляризации в электрическом поле. Поляризация представляет собой образование на поверхности вещества зарядов с разными знаками.
Пример диэлектрика
В диэлектриках содержится малое количество свободных электронов, при этом электроны имеют сильную связь с ядрами атомов и только в редких случаях отсоединяются от них. Это означает, что данные вещества не обладают способностью проводить ток.
Данное свойство весьма полезно в сфере производства средств, используемых при защите от электрического тока: диэлектрические перчатки, коврики, ботинки, изоляторы на электрическое оборудование и т.п.
Полупроводники
Эти тела по способности передавать электрические заряды занимают промежуточное значение между проводниками и диэлектриками.
Что это означает? Дело в том, что при низкой температуре полупроводники являются диэлектриками. Они не способны передать какой-то заряд.
Повысим температуру. Атомы вещества начинают сильнее колебаться около положений своего равновесия. Эти колебания достигают такой силы, что электроны, находящиеся на внешних оболочках атомов (валентные электроны) становятся свободными. Так полупроводник становится проводником.
Какой характерной особенностью обладают полупроводники? С повышением температуры их проводимость возрастает. Интересно, что у металлов она, наоборот, будет уменьшаться.
Обратите внимание, что эта температура не всегда является очень высокой. Например, для кремния и германия она составляет около $20 \degree C$
Примеры полупроводников:
- оксиды и сульфаты металлов
- германий
- кремний
- некоторые органические вещества
Из-за своих свойств полупроводники широко применяются в технике. Часто их используют как своеобразные термометры. Например, их используют как температурно зависимые резисторы. Это позволяет контролировать протекание тока при определенных температурах. Когда она достигает критической отметки, какой-то участок цепи перестает проводить ток или, наоборот, начинает. Более подробно об электрической цепи и ее составляющих мы будем говорить в следующих уроках.
{"questions":,"explanations":,"answer":}}}]}
Полупроводники начинают проводить электричество и при других воздействиях на них:
- воздействие света
- пропускание потока быстрых частиц
- введение примесей
Рисунок 3. Под воздействие света полупроводники начинают проводить электричество
Это явление позволяет использовать полупроводники в системах дистанционного управления и сигнализации. Можно сказать, что область применения полупроводников в технике сама по себе очень широка. Они являются составной частью микросхем в телевизорах, компьютерах, радио, используются при создании транзисторов, диодов и др.
{"questions":,"answer":}}}]}
Что такое изоляторы?
Изоляторы, с другой стороны, представляют собой вещества, которые оказывают прямо противоположное влияние на поток электронов. Эти вещества препятствуют свободному потоку электронов, тем самым препятствуя потоку электрического тока. Изоляторы содержат атомы, которые крепко держатся за свои электроны, что ограничивает поток электронов от одного атома к другому. Из-за тесно связанных электронов они не могут свободно перемещаться. Проще говоря, вещества, которые препятствуют протеканию тока, являются изоляторами. Материалы имеют такую низкую проводимость, что поток тока почти ничтожен, поэтому они обычно используются для защиты нас от опасных воздействий электричества.
Некоторыми распространенными примерами изоляторов являются стекло, пластик, керамика, бумага, резина и т. Д. Поток тока в электронных схемах не является статическим, а напряжение может быть довольно высоким в разы, что делает его немного уязвимым. Иногда напряжение достаточно высокое, чтобы электрический ток протекал через материалы, которые даже не считаются хорошими проводниками электричества. Это может вызвать электрический шок, потому что человеческий организм также является хорошим проводником электричества. Поэтому электрические провода покрыты резиной, которая действует как изолятор, который, в свою очередь, защищает нас от проводника внутри. Возьмите любой шнур в этом отношении, и вы увидите изолятор, и в случае, если вы увидите проводника, пришло время его заменить.
Как работает такой измеритель
По сути дела, подобный сенсор представляет собой конденсатор. На определении его характеристики базируется работа измерителя и контроль параметров. Поэтому вполне к месту будет вспомнить о том, что такое конденсатор.
Про конденсатор, его характеристики
Как известно, емкость конденсатора определяется формулой
С=Ɛ×Ɛ0×S/d
Где:
- Ɛ0 — диэлектрическая постоянная;
- Ɛ — относительная диэлектрическая проницаемость среды между пластинами;
- d — зазор между обкладками;
- S — площадь обкладок.
В этой формуле три переменные величины — диэлектрическая проницаемость Ɛ, площадь S обкладок конденсатора и зазор между обкладками d. Изменение любой из них приведет к изменению емкости, а отслеживание колебаний позволит контролировать характеристики среды или другого параметра.
Принцип работы емкостного измерителя
Самое простое техническое решение — включить измерительный сенсор во времязадающую цепь генератора. Не вдаваясь в тонкости схемотехники, можно сказать, что принцип работы любого емкостного датчика тем или иным образом связан с изменением параметров генератора. Это происходит из-за колебаний емкости конденсатора, что приводит к генерации им колебаний другой частоты.
Таким образом, отслеживая ее значение на выходе измерителя, можно оценивать изменения контролируемого параметра. Конечно, в каждом конкретном случае схемотехническое решение может быть разным. Во многом оно будет зависеть от параметра конденсатора, на который оказывается воздействие со стороны внешней среды.
Это может быть изменение зазора между обкладками конденсатора из-за их сближения или удаления. Или при заполнении резервуара другой средой, например водой, изменится значение диэлектрической проницаемости. Или обкладки конденсатора после внешних воздействий будут располагаться друг относительно друга по-разному.
Любое подобное воздействие вызовет изменение значения емкости конденсатора, а значит, повлияет на работу схемы. Например, емкостные датчики уровня контролируют степень заполнения резервуара или бункера. Зная зависимость между уровнем жидкости и емкостью конденсатора, можно определить, насколько заполнен бак.
Хотя надо отметить, что могут применяться и другие способы обработки сигналов датчика. Их достаточно много, выбор того или иного зависит от конкретных условий. Современный уровень развития электроники позволяет получать обработанный сигнал в виде цифрового кода.
Еще один метод измерения емкости — использование аналого-цифровых преобразователей. Микроконтроллеры вполне могут справиться подобной задачей. В этом случае значительно упрощается измерительная часть приборов на их основе.