Сделаем зарядное устройство из блока питания компьютера

Что «ценного» в старых телевизорах?

Ценности в вышедших из употребления моделях мало: заводы нашей страны пока не подвергают переработке все виды отходов, как позволяют методы утилизации, например, в Японии. Однако, часть массы металлов и пластиков, которые содержит телевизор, в роли вторсырья используется после переработки для тротуарных плиток, керамики и стекла.

Это в свою очередь улучшает состояние экосистемы и экономическое состояние страны. Стоит рассмотреть, по какой причине требуется правильно утилизировать специализированными компаниями каждую отдельную часть начинки.

Кинескопы

Кинескоп, в сумме составляющий половину «внутренностей» старых телевизоров, не столько ценен, сколько опасен.

Большей частью уходят не в переработку для дальнейшего использования, а на нейтрализацию.

Дисплеи жидкокристаллических телевизоров

В состав люминесцентных ламп с холодными катодами, которые содержит жидкокристаллический монитор моделей телевизоров поновее, входит до 4-х мг ртути. Её попадание в организм тоже приводит к непредсказуемым последствиям.

Пластик

При возгорании — «бомба замедленного действия», выбрасывающая в воздух диоксиды, хлор, углеводороды. Эта гремучая смесь представляет опасность для окружающей среды. Канцерогенна даже в небольших дозах, а в крупной спустя 30 минут поражает органы дыхания и приводит к смерти.

Провода и электроника

Оболочка проводов содержит долю пластика, вред которого при возгорании неоспорим.

Поливинилхлорид и формальдегиды пагубно влияют на лёгкие.

А вот цветные металлы, содержащиеся в микросхемах и внутри проводов — ценное сырьё, требующееся не столько для нейтрализации, сколько для вторичной переработки.

Металл

Помимо тяжёлых металлов телевизор на 40% состоит из сплавов, которые, проходя утилизацию, используются заново.

В незначительной доле там содержатся даже ценные металлы: золото и серебро. Процент выше в старых моделях.

Варианты БП для самостоятельного монтажа

Блок питания выбирают исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также узнаем, как собирать самодельные блоки питания.

Простой БП 0-30 В

Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.

Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе, благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.

Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное — подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.

Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.

В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.

Для измерения потребляемого нагрузкой тока задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.

Вольтметр можно использовать цифровой.

Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.

Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.

Мощный импульсный БП

Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для зарядки АКБ.

Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:

  1. Внутренняя схема питания, состоящая из источника напряжения на 12 В, и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.
  2. Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.
  3. Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.

Чтобы получить выходное напряжение 30 В, вторичную обмотку силового трансформатора нужно перемотать, увеличив количество витков.

Для размещения элементов схемы изготавливают печатную плату.

Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.

На Ардуино

Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может “отдыхать”, функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.

«Умный» блок питания представлен на схеме.

Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.

Печатную плату можно сделать по образцу.

Внешний вид устройства и внутреннее расположение компонентов представлены на фото.

Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.

Причины неисправности по произодителям

Итак, поломка ТВ от любого современного производителя сопровождается такими симптомами, как:

  • чёрный экран при активном индикаторе ВКЛ/ВЫКЛ;
  • нехарактерный режим работы LED-диода на панели управления;
  • гудение, свист или щёлканье внутри прибора.

Далее, в статье будут рассмотрены основные неисправности телевизионных аппаратов от того или иного производителя. Помните, что поиск поломки необходимо начинать снаружи, а заканчивать — внутри. Тщательную диагностику лучше всего поручить специалисту, способному не только определить проблему, но и устранить её.

Samsung

Выход Samsung из строя может быть обеспечен самыми разными факторами: скачок напряжения, неудачное обновление программного обеспечения по воздуху, сработавший режим блокировки либо сбой на каком-либо шлейфе. В любом случае устранение дефекта не займёт много сил и времени, так как производитель всегда оказывает покупателям из нашей страны хорошую сервисную поддержку по гарантийным обязательствам.

LG

Ситуация с LG такая же, как и с Samsung. Обе компании дорожат своей репутацией, поэтому при каких-либо проблемах всегда готовы пойти навстречу потребителям.

Philips

Практика показывает, что чаще всего причиняй неработоспособности Philips становится случайно сработавшая система блокировки. В статье уже отмечалось, что отключение блокиратора лучше доверить мастерам.

Как самому починить Филипс, разбирали здесь.

Sony

Красочные дисплеи Sony работают как часы, чего не скажешь об их встроенных блоках питания. Без консультации специалиста здесь точно не обойтись.

Toshiba

Smart-TV от японской Toshiba часто перестает работать из-за неисправности с программным обеспечением. Перейдите на официальный веб-сайт производителя в строке вбейте свою модель, скачайте файлик и выполните перепрошивку по представленному алгоритму.

Рубин

Отечественные Рубины могут не работать из-за:

  • поврежденного блока питания – не запускается;
  • неисправного конденсатора;
  • сгорания микросхемы – пикает при подаче напряжения.

Пользовательское вмешательство противопоказано данным устройствам.

Horizon

Современные модели Горизонта очень часто ломаются, спустя всего несколько лет. Самый распространённый дефект — повреждённым трансформатор, замена которого в сервисном центре будет стоить меньше 1000 рублей. Подобная неполадка также встречается и у «Витязей».

Sharp

У Sharp распространены такие проблемы, как:

  • повреждение строчного транзистора;
  • высыхание фильтра конденсатора.

Самостоятельную замену таких деталей выполнить просто невозможно.

Supra

Проблемы с Супрой обычно носят программный характер и проявляются в следующих случаях:

  • сбой работы процессора;
  • поломка flash-накопителя – перестает загружаться (в лучшем случае показывает логотип);
  • слетевшее ПО – равномерно мерцающая лампочка на корпусе.

Стоит отметить, здесь не справиться большинство владельцев телевизионных девайсов.

Отправить комментарий

Коэффициент стабилизации тока оказался невысоким, плюс падение напряжения на проводах земли дополнительно вносило погрешность. Показано размещение силовых транзисторов Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Схема нового блока управления Усилитель в цепи регулировки тока собран по аналогичной дифференциальной схеме включения ОУ DA1. Обдув нужен постоянный!


Следите за нагревом силовых элементов. В принципе, суммарный потребляемый ток этих элементов не высокий — его прекрасно потянет дежурный источник питания.


Я «на глаз» установил этот порог когда радиатор с диодной сборкой обжигал палец..


Дизайн передней панели остался практически неизменным — он хорошо себя зарекомендовал с точки зрения эргономики.


Например, при напряжении 14 В блок может отдать в нагрузку ток 16 А, что очень заманчиво!


Блок питания получился настолько мощным и надёжным, что позволяет: 3 года.


Прежде всего, это связано с цепочками отрицательной обратной связи ООС между выв. В первом варианте я отказался от использования дифференциального усилителя в петле регулировки тока, дабы уменьшить количество проводов. Переделка ATX sparkman 300 в регулируемый

↑ Первое включение, тестирование

Правильно собранное, без ошибок, устройство запускается сразу, но в целях безопасности вместо сетевого предохранителя включаем лампу накаливания напряжением 220 В мощностью 100 Вт, она будет служить нам балластным резистором и в аварийной ситуации спасет детали схемы ИБП от повреждения. Движок резистора R4 устанавливаем в положение минимального сопротивления, включаем зарядное устройство (ЗУ) в сеть, при этом лампа накаливания должна кратковременно вспыхнуть и погаснуть. При работе ЗУ на минимальном токе нагрузки радиаторы транзисторов VT3, VT4 и диодной сборки VD11 практически не нагреваются. При увеличении сопротивления резистора R4 начинает возрастать ток зарядки, при каком-то уровне вспыхнет лампа накаливания. Ну, вот и все, можно снимать ламу и ставить на место предохранитель FU1.

В случае если вы все-таки решились установить диодную сборку из 5-вольтового выпрямителя (повторимся, что она выдерживает по току, но обратное напряжение всего 40 В), включаем ИБП в сеть на одну минуту, а движком резистором R4 устанавливаем ток в нагрузку 2 — 3 А, выключаем ИБП. Радиатор с диодной сборкой должен быть теплым, но ни в коем случае не горячим. Если он горячий — значит, данная диодная сборка в данном ИБП долго не проработает и обязательно выйдет из строя.

Проверяем ЗУ на максимальном токе в нагрузку, для этого удобно использовать устройство , подключенное параллельно АКБ, которое позволит не испортить батарею длительными зарядами во время наладки ЗУ. Для увеличения максимального тока зарядки, можно несколько увеличить сопротивления резистора R4, но при этом не следует превышать максимальную мощность на которую рассчитан ИБП.

Подбором сопротивлений резисторов R34 и R35 устанавливаем пределы измерения для вольтметра и амперметра соответственно.

Кабель для подключения дисководов

Жилы с 10 по 16 перекручены — необходимо для идентификации дисковода.

Нечетные контакты — корпус.

Вход/Выход Сигнал Значение
2 Вход High/normal density Высокая/нормативная плотность записи
4 Вход Unused Спецификация производителя
6 Вход Unused Спецификация производителя
8 Выход Index Идентификация индексного отверстия
10 Вход Motor Enable 0 Двигатель дисковода A: включен
12 Вход Drive Select 1 Активизация привода B:
14 Вход Drive Select 0 Активизация привода A:
16 Вход Motor Enable 1 Двигатель дисковода B: включен
18 Вход Direction Select Указание направления для головки
20 Вход Step Импульс для движения головки
22 Вход Write Data Запись данных
24 Вход Write Gate Сигнал для перезаписи данных
26 Выход Track 00 Головка стоит на нулевой дорожке
28 Выход Write Protect Наличие защиты диска от записи
30 Выход Read Data Чтение данных
32 Вход Side Select Доступ на первую или вторую сторону
34 Выход Drive Status Готовность привода

>Интерьерный бокс и диорама

Бесконечно долго можно смотреть на огонь, небо и на оригинальное творчество. В последнем случае пространство в телевизоре почти идеально для демонстрации того, что сделано своими руками

Но, чтобы экспозиция действительно привлекала внимание и дарила удовольствие, а еще и за одно украшал интерьер. Внутри него умельцы устраивают полноценные интерьеры гостиных, кухонь спален и даже целые дома. Оригинальность идеи в тем, что такие экспозиции продуманы до самых мельчайших деталей

Поэтому они выглядят, как настоящие, только в уменьшенном масштабе

Оригинальность идеи в тем, что такие экспозиции продуманы до самых мельчайших деталей. Поэтому они выглядят, как настоящие, только в уменьшенном масштабе.

Момент жизни можно запечатлить не только на фото, но и в виде целой сценки миниатюры, такое искусство носит название «Диорама». А в случае со старым телевизором — это еще один вариант творчества, который можно демонстрировать таким образом.

Рум-бокс или диорама в старом телевизоре обязательно оборудуются внутренней подсветкой. Поэтому в вечернее время такой экспонат обретает удивительное очарование.

Переделка БП ATX в регулируемый или лабораторный блок питания

А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ-контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).

Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.

Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.

Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.

Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.

Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.

Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.

Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.

Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку –  2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.

Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.

Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.

Возможные доработки

На достигнутом многие автолюбители не останавливаются и пытаются усовершенствовать конструкцию зарядного устройства, собранного на базе обычного блока питания для персональных компьютеров.

Если комп старый и не используется, а его блок питания вполне ещё работоспособный, его можно смело задействовать в собственных экспериментах, в попытках воссоздать зарядное устройство.

Среди усовершенствований можно выделить довольно простую, но полезную доработку. Заключается она в том, чтобы к полученному блоку подключить цифровой тип вольтметра. Преимущество такой модернизации в возможности следить и контролировать течение зарядного процесса. Тем самым удастся вовремя отключить и прекратить подачу заряда на аккумуляторную батарею.

Ещё одна простая, но полезная доработка заключается в установке ручки на корпус блока. Тем самым будет намного удобнее переносить устройство.

Некоторые монтируют в корпус, вырезая отверстие соответствующего размера, цифровой измерительный прибор. На него будут выводиться все цифровые данные, сообщающие о работе блока питания, переделанного в зарядное устройство для аккумуляторных автомобильных батарей.

У зарядного устройства в приведённом примере есть функция защиты от возможной перегрузки и возникающего короткого замыкания. Но защиты от потенциально опасной переполюсовки не предусмотрено.

Потому подключать к ЗУ аккумулятор, нарушая полярность (минус на плюс, плюс на минус), нельзя ни в коем случае. Иначе зарядное устройство моментально выйдет из строя. И все потраченные силы, время и старания окажутся напрасными.

Наглядно видно, что даже старенький блок питания от персонального компьютера может стать превосходной основой для создания зарядного устройства, пригодного для обслуживания автомобильного аккумулятора.

Но без определённых навыков и умений добиться желаемого результата не получится. Здесь нужно разбираться в электронике и электрике, уметь обращаться с электрическими схемами, правильно их читать, находить требуемые компоненты и пр. Потому обычный новичок, который впервые знакомится с устройством ЗУ и БП, такую работу не осилит. Это может показаться простой и легко выполнимой задачей. На практике у многих ничего не получается, либо работоспособность зарядного устройства оказывается далёкой от ожидаемых результатов.

Потому порой самым правильным решением станет покупка современного, функционального и простого в применении заводского зарядного устройства от проверенного и хорошо себя зарекомендовавшего производителя.

Как переделать БП ноутбука в зарядное устройство

Блок питания настольного ПК и ноутбука – это абсолютно разные девайсы, но и ноутбучный блок можно приспособить для зарядки АКБ. У переносного компьютера выходное напряжение 19 В – это больше того, что нужно, так что здесь задача противоположная – понижение напряжения.

Рассмотрим алгоритм переделки блока питания ноутбука Great Wall в ЗУ для авто:

первая задача – демонтировать блок питания

На разных моделях эта операция может иметь свои нюансы, нам важно не повредить БП при разборке. В ноутбуках блок питания представляет собой плату, в нашем случае это БП, работающий на двух микросхемах, TEA1751/1761. Вы можете узнать выходной вольтаж блока, подключив к выходам вольтметр

У нашей модели БП рабочий номинал на выходе составил 18,2 В;
для выполнения задачи снижения выходного напряжения до 14,4 В нужно найти резистор, соединяющий положительный вывод БП с 6 контактом микросхемы ТЕА176. Выпаиваем его и заменяем на подстроечный резистор номиналом 22 кОм, предварительно настроенный на 18 кОм (номинал родного резистора). Паяльные работы следует выполнять максимально аккуратно – все детали микросхем расположены очень плотно, так что шанс повредить их существует. Понижаем величину подстроечного сопротивления, пока не получим на выходе нужные 14,4 В;

Вы можете узнать выходной вольтаж блока, подключив к выходам вольтметр. У нашей модели БП рабочий номинал на выходе составил 18,2 В;
для выполнения задачи снижения выходного напряжения до 14,4 В нужно найти резистор, соединяющий положительный вывод БП с 6 контактом микросхемы ТЕА176. Выпаиваем его и заменяем на подстроечный резистор номиналом 22 кОм, предварительно настроенный на 18 кОм (номинал родного резистора). Паяльные работы следует выполнять максимально аккуратно – все детали микросхем расположены очень плотно, так что шанс повредить их существует. Понижаем величину подстроечного сопротивления, пока не получим на выходе нужные 14,4 В;

теперь подстроечный резистор можно выпаять, после чего нужно измерить его сопротивление (мы получили 12,3 кОм). Впаиваем на его место постоянный резистор с таким сопротивлением (если точного номинала подобрать не удаётся, можно использовать два резистора с суммарным сопротивлением, равным заданному, например, на 10 кОм и 2,4 кОм). Впаивать в плату их нужно после того, как концы резисторов заключены в термокембрик;
теперь можно протестировать напряжение на выходе, у нас получилось 14,3 В, и этого достаточно для выполнения зарядки аккумулятора авто;

приступаем к обратной операции – сборке нашего блока питания, превращённого в автомобильную зарядку. Останется подключить провода с зажимами. Перед их впаиванием убедитесь в правильности соблюдения полярности: минусовый контакт должен стать центральным проводом, плюсовый – оплёткой.

Такое зарядное устройство будет ничуть не хуже того, что получится из БП стационарного компьютера. Во время процедуры зарядки батареи величина тока будет изменяться в пределах 2-3 А. Когда этот показатель упадёт до 0,25-0,5 А, зарядку можно прекращать. Для облегчения контроля над ходом зарядки аккумулятора ЗУ желательно оснастить амперметром, а также светодиодом, который будет предупреждать автовладельца об окончании зарядки.

Как видим, в переделке компьютерного БП в зарядку нет ничего сложного – достаточно минимальных знаний в схемотехнике и умений обращаться с паяльником.

Краткие выводы

Сделанное своими руками зарядное устройство для авто из компьютерного БП обладает целым рядом достоинств:

  • отличной надёжностью и живучестью: современные импульсные БП отличаются высоким КПД, на уровне 80–85%, при этом наработка на отказ вместе с вентилятором составляет около 50000 часов, что для зарядного устройства фантастически много. Другими словами, такое ЗУ можно использовать и в качестве профессионального зарядника, способного работать сутками напролёт. Более того, поскольку в нём удалены схемы 3.3 и 5 В, его ресурс получается ещё большим;
  • отметим и достаточно высокий уровень стабилизации выходного напряжения, в пределах 5% (для 12В это 0.6 В);
  • ограничение по току позволяет использовать такое самодельное ЗУ даже для зарядки гелевых АКБ, не опасаясь их перегрева;
  • имеется возможность зарядки аккумулятора на работающем автомобиле.

Но есть и недостаток. Это плата за высокую автономность устройства: на полную зарядку АКБ придётся потратить больше времени, поскольку уменьшение тока заряда носит не линейный, а экспоненциальный характер. Зато вы не сможете довести батарею до кипения, как это могло бы случиться при зарядке постоянным током.

На сладкое немного о выводе 4.

Это тоже вход компаратора, но с
задержкой 120 мВольт. И тут дело даже не в задержке, а в том, что
конструктор микросхемы предусмотрел использовать его для регулировки
«мёртвого времени». Обычно в схемах АТХ-АТ его используют как «мягкий
пуск» и для целей всяких защит. Вот эти защиты Вам и предстоит вырезать.
Работает ОНО так. При включении БП
конденсатор с выв.4 на Uref разряжен и на выводе 4 сразу появляется +5
вольт, что наглухо закрывает выходные ключи микросхемы. Затем
конденсатор заряжается через резистор (выв4-земля) и на выводе 4
напряжение падает до нуля. Это приводит к медленному нарастанию
выходного напряжения до момента когда оно стабилизируется ОС по
напряжению. В нашем случае вывод 4 целесообразно попутно задействовать
для ограничения выходного тока. По схеме видно, что при увеличении тока в
нагрузку увеличивается падение напряжения на измерительных резисторах
(4 резистора 0,22 ом), открывается транзистор 733 (такой p-n-p
у меня был из выпаянных), что приводит к подъёму напряжения на выводе 4
и так до режима стабилизации тока. На полной схеме цепь стабилизации
тока обведена красным фломастером. Вот так простенько удалось добиться и
стабильного тока зарядки и защиты от короткого замыкания на выходе. 
Кстати, на выходе советую ни каких
электролитических конденсаторов не ставить, тогда при «коротком» не
будет ни каких брызг и взрывов, вызывающих неприятные ощущения.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Раздольная энергия
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: