Самостоятельное изготовление
Итак, самый простой способ сделать катушку Тесла для чайников своими руками. Часто в Интернете можно встретить цифры, превышающие стоимость хорошего смартфона, но на самом деле из кучи мусора в гараже можно собрать трансформатор на 12В, который позволит весело провести время, включив лампу без использования розетки.
требуется эмалированный медный провод. Если вы не можете найти лак для ногтей, вам также понадобится обычный лак для ногтей. Диаметр проволоки может варьироваться от 0,1 до 0,3 мм. Для поддержания количества оборотов требуется около 200 метров. Его можно намотать на обычную ПВХ трубу диаметром от 4 до 7 см. Высота от 15 до 30 см. Также потребуется приобрести транзистор, например, D13007, пару резисторов и проводов. Было бы неплохо иметь компьютерный кулер, охлаждающий транзистор.
Теперь можно приступить к сборке:
- отрезать 30 см трубы;
- оберните его нитью. Изгибы должны быть максимально плотно прилегающими друг к другу. Если проволока не покрыта эмалью, обработайте лаком. Сверху трубы проденьте конец проволоки через стену и приподнимите так, чтобы он выступал на 2 см выше установленной трубы.;
- сделать платформу. Подойдет обычная плита ДСП;
- можно сделать первую катушку. Нужно взять медную трубку диаметром 6 мм, согнуть ее на три с половиной оборота и закрепить на каркасе. Если диаметр трубы меньше, витков должно быть больше. Его диаметр должен быть на 3 см больше, чем у второй катушки. Прикрепите к каркасу. Сразу закрепляем вторую катушку;
- есть несколько способов создать тор. Можно использовать медные трубы. Но проще взять обычную алюминиевую гофру и металлическую перекладину для крепления к выступающему концу провода. Если проволока слишком хрупкая, чтобы удерживать тороид, можно использовать гвоздь, как на изображении ниже;
- не забудьте защитное кольцо. Однако, если один конец первичной цепи заземлен, от него можно отказаться;
- когда конструкция готова, транзистор подключается по схеме, подключается к радиатору или кулеру, затем необходимо подать питание, и установка завершена.
В качестве блока питания для установки многие используют обычную коронку Durasel.
Источники
- https://lightika.com/raznoe/besprovodnaya-peredacha-energii.html
- https://amperof.ru/teoriya/besprovodnaya-peredacha-elektroenergii.html
- https://uk-parkovaya.ru/secrets/wires/3-sposoba-besprovodnoj-peredaci-energii-tesla-kak-vsegda-byl-prav-lazery-mikrovolny-i-katuski-induktivnosti.html
- https://domikelectrica.ru/3-sposoba-peredachi-energii-bez-provodov/
- https://www.asutpp.ru/besprovodnaya-peredacha-elektrichestva.html
- https://geekometr.ru/statji/besprovodnoj-sposob-peredachi-elektroenergii.html
- https://mentamore.com/covremennye-texnologii/besprovodnoe-elektrichestvo.html
- [https://radioprog.ru/post/152]
Маршрут транспортировки электричества
Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.
Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).
Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности – P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач – тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство – чем тоньше провода, тем они дешевле.
Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.
Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.
От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д
Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт)
Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.
Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.
Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:
Более подробно об этом вопросе рассказывают эксперты:
Как электричество поступает от источника к потребителю
Современное использование катушки Тесла
Самой популярной является демо-версия, которая позволяет увидеть электрическую дугу красивого фиолетового цвета и включить лампу без проводов. Однако иногда все же используется принцип катушки Тесла:
- В системах зажигания двигателя внутреннего сгорания. Он использует тот же принцип преобразования энергии в электрическую дугу. Только зажигание работает на низких частотах, а катушка Тесла работает на высоких частотах.
- Для питания люминесцентных и неоновых ламп. Хотя последнее чаще всего используется в качестве уловки.
- Для обнаружения дыр в вакуумных системах.
Как видите, изобретение еще не полностью разработано. Патент все еще находится на рассмотрении инвестора. Но, скорее всего, инвестора никогда не будет.
Микроволны
Неужели нет другого реально работающего способа передать электричество без проводов. Есть, и его изобрели еще до попыток и детских игр в звездные войны.
Оказывается, что специальные микроволны с длиной в 12см (частота 2,45Ггц), являются как бы прозрачными для атмосферы и она им не мешает в распространении.
Какой бы ни была плохой погода, при передаче с помощью микроволн, вы потеряете всего пять процентов! Но для этого вы сначала должны преобразовать электрический ток в микроволны, затем их поймать и опять вернуть в первоначальное состояние.
Первую проблему ученые решили очень давно. Они изобрели для этого специальное устройство и назвали его магнетрон.
Причем это было сделано настолько профессионально и безопасно, что сегодня каждый из вас у себя дома имеет такой аппарат
Зайдите на кухню и обратите внимание на свою микроволновку
У нее внутри стоит тот самый магнетрон с КПД равным 95%.
Но вот как сделать обратное преобразование? И тут было выработано два подхода:
Американский
Советский В США еще в шестидесятых годах ученый У.Браун придумал антенну, которая и выполняла требуемую задачу. То есть преобразовывала падающее на него излучение, обратно в электрический ток.
Он даже дал ей свое название — ректенна.
После изобретения последовали опыты. И в 1975г при помощи ректенны, было передано и принято целых 30 квт мощности на расстоянии более одного километра. Потери при передаче составили всего 18%.
Спустя почти полвека, этот опыт до сих так никто и не смог превзойти. Казалось бы метод найден, так почему же эти ректенны не запустили в массы?
И тут опять всплывают недостатки. Ректенны были собраны на основе миниатюрных полупроводников. Нормальная работа для них — это передача всего нескольких ватт мощности.
А если вы захотите передать десятки или сотни квт, то готовьтесь собирать гигантские панели.
И вот тут как раз таки появляются не разрешимые сложности. Во-первых, это переизлучение.
Мало того, что вы потеряете из-за него часть энергии, так еще и приблизиться к панелям без потери своего здоровья не сможете.
Вторая головная боль — нестабильность полупроводников в панелях. Достаточно из-за малой перегрузки перегореть одному, и остальные выходят из строя лавинообразно, подобно спичкам.
В СССР все было несколько иначе. Не зря наши военные были уверены, что даже при ядерном взрыве, вся зарубежная техника сразу выйдет из строя, а советская нет. Весь секрет тут в лампах.
В МГУ два наших ученых В.Савин и В.Ванке, сконструировали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран на основе ламповой технологии.
Внешне это что-то вроде трубки длиной 40см и диаметром 15см. КПД у этого лампового агрегата чуть меньше, чем у американской полупроводниковой штуки — до 85%.
Но в отличие от полупроводниковых детекторов, циклотронный преобразователь энергии имеет ряд существенных достоинств:
надежность
большая мощность
стойкость к перегрузкам
отсутствие переизлучения
невысокая цена изготовления
Однако несмотря на все вышесказанное, во всем мире передовым считаются именно полупроводниковые методы реализации проектов. Здесь тоже присутствует свой элемент моды.
После первого появления полупроводников, все резко начали отказываться от ламповых технологий. Но практические испытания говорят о том, что это зачастую неправильный подход.
Конечно, ламповые сотовые телефоны по 20кг или компьютеры, занимающие целые комнаты никому не интересны.
Но иногда только проверенные старые методы, могут нас выручить в безвыходных ситуациях.
В итоге на сегодняшний день, мы имеем три возможности передать энергию без проводов. Самый первый из рассмотренных ограничен как расстоянием, так и мощностью.
Но этого вполне хватит, чтобы зарядить батарейку смартфона, планшета или чего-то побольше. КПД хоть и маленький, но метод все же рабочий.
Способ с лазерами хорош только в космосе. На поверхности земли это не очень эффективно. Правда когда другого выхода нет, можно воспользоваться и им.
Зато микроволны дают полет для фантазий. С их помощью можно передавать энергию:
на земле и в космосе
с поверхности земли на космический корабль или спутник
и наоборот, со спутника в космосе обратно на землю
Трансформаторные подстанции
Для преобразования напряжения одной величины в другую служат трансформаторные подстанции. Они представляют собой огороженный забором объект, имеющий на своей территории трансформатор. Внутри него располагаются первичная и вторичная обмотки (катушки). Их электромагнитное взаимодействие позволяет с большим КПД преобразовывать энергию. На подстанцию заходят воздушные линии или кабеля с одним напряжением, а выходят с другим, как правило, более низким.
Понижающий трансформатор
Там же располагаются всевозможные системы контроля и учёта электроэнергии и распределительное устройство (РУ). Оно предназначено для связи с другими объектами энергосистемы и является неотъемлемой частью трансформаторной подстанции. РУ позволяет отключить отдельного потребителя по стороне низкого напряжения, не обесточивая при этом всех остальных.
Принципы передачи и распределение электрической энергии
Электроэнергетической системой называется электрическая часть энергосистемы и питающиеся от нее приемники электрической энергии, объединенные общностью процесса производства, передачи, распределения и потребления электрической энергии (Рис. 9).
Трансформаторные подстанции позволяют преобразовать напряжение из высокого в низкое.
При передаче электроэнергии, чем выше напряжение в сети, тем ниже уровень технических потерь электроэнергии. Однако потребители не могут использовать электроэнергию с высоким напряжением. Распределительные подстанции служат для приема и распределения электроэнергии, в основном, в городских электрических сетях, крупных промышленных и нефтедобывающих предприятиях.
Рисунок 9 — Передача и распределение электрической энергии
Принцип передачи и распределения электрической энергии заключаются в выполнении следующих основных приоритетов:
- максимальное приближение источников высокого напряжения к потребителям;
- сокращение ступеней трансформации;
- повышение напряжения электропитающих сетей;
- использование минимального количества электрооборудования;
- раздельная работа линий и трансформаторов;
- резервирование питания для отдельных категорий потребителей;
- секционирование всех звеньев распределения энергии с применением устройств АВР при преобладании потребителей I и II категорий.
Однако существует ряд особенностей при транспорте электроэнергии В реальности при передаче электроэнергии от электростанций в магистральные сети зачастую используются трансформаторные подстанции (Рис. 10).
Рисунок 10 — Транспортировка электроэнергии
Просмотров: 1 360
Уникальность идеи
Всем известно, что для прохождения электрического тока по проводам должен иметься замкнутый контур из двух проводов, по которым протекает ток. Или отдельный провод и заземление.
Теоретически передача энергии по одному проводу невозможна. Однако, при передаче электроэнергии по методу Авраменко, ток протекает не по проводнику, а по его поверхности.
В результате мощность передаваемой энергии никак не зависит от материала и толщины проводов. Она может быть очень малой, при этом проводники не нагреваются.
При поверхностной передаче электроэнергии, толщина провода не имеет значения. А это значит, что проводник может иметь малую толщину. Так же не имеет значение материал, из которого сделан провод.
Его не обязательно делать медным, он может быть из стали или другого токопроводящего материала. По сути, проводник служит указателем, куда нужно передать энергию. Но это все по заявлениям разработчиков. На самом деле эта теория не имеет научного объяснения.
Но если представить, что это возможно, то перед мировой энергетикой открываются новые возможности:
- Нет необходимости в громоздких опорах электропередач. Снижение капитальных затрат.
- Отпадает необходимость использовать такое количество проводов. А это колоссальная экономия.
- Отсутствие потерь в линиях электропередач. Увеличение пропускной способности.
- Сведение до минимума аварийных ситуаций на линии. Отсутствие короткого замыкания и сокращение обрывов проводов.
Все это приведет к снижению эксплуатационных затрат. И как следствие уменьшению стоимости электричества конечному потребителю.
Технология беспроводной передачи электроэнергии
Беспроводная передача электрической энергии (WPT) позволяет подавать питание через воздушный зазор без необходимости использования электрических проводов. Беспроводная передача электроэнергии может обеспечить питание от источника переменного тока для совместимых аккумуляторов или устройств без физических разъемов и проводов. Беспроводная передача электрической энергии может обеспечить заряд мобильных телефонов и планшетных компьютеров, беспилотных летательных аппаратов, автомобилей и прочего транспортного оборудования. Она может даже сделать возможной беспроводную передачу в космосе электроэнергии, полученной от солнечных панелей.
Беспроводная передача электрической энергии начала свое быстрое развитие в области бытовой электроники, заменяя проводные зарядные устройства. На выставке CES 2017 будет показано множество устройств, использующих беспроводную передачу электроэнергии.
Однако концепция передачи электрической энергии бес проводов возникла примерно в 1890-х годах. Никола Тесла в своей лаборатории в Колорадо Спрингс мог без проводов зажечь электрическую лампочку, используя электродинамическую индукцию (используемой в резонансном трансформаторе).
Изображение из патента Теслы на «устройство для передачи электрической энергии», 1907 год
Были зажжены три лампочки, размещенные на расстоянии 60 футов (18 метров) от источника питания, и демонстрация была задокументирована. У Теслы были большие планы, он надеялся, что его башня Ворденклиф, расположенная на Лонг-Айленд, будет без проводов передавать электрическую энергию через Атлантический океан. Этого никогда не произошло из-за различных проблем, в том числе, и с финансированием и сроками.
Беспроводная передача электрической энергии использует поля, создаваемые заряженными частицами, для переноса энергии через воздушный зазор между передатчиками и приемниками. Воздушный зазор закорачивается с помощью преобразования электрической энергии в форму, которая может передаваться по воздуху. Электрическая энергия преобразуется в переменное поле, передается по воздуху, и затем с помощью приемника преобразуется в пригодный для использования электрический ток. В зависимости от мощности и расстояния, электрическая энергия может эффективно передаваться через электрическое поле, магнитное поле или электромагнитные волны, такие как радиоволны, СВЧ излучение или даже свет.
В следующей таблице перечислены различные технологии беспроводной передачи электрической энергии, а также формы передачи энергии.
Технологии беспроводной передачи электрической энергии (WPT)ТехнологияПереносчик электрической энергииЧто позволяет передавать электрическую энергию
Индуктивная связь | Магнитные поля | Витки провода |
Резонансная индуктивная связь | Магнитные поля | Колебательные контуры |
Емкостная связь | Электрические поля | Пары проводящих пластин |
Магнитодинамическая связь | Магнитные поля | Вращение постоянных магнитов |
СВЧ излучение | Волны СВЧ | Фазированные ряды параболических антенн |
Оптическое излучение | Видимый свет / инфракрасное излучение / ультрафиолетовое излучение | Лазеры, фотоэлементы |
Наиболее перспективные направления
Беспроводное электричество постоянно изучается многими физиками, рассматриваются наиболее перспективные направления в этой области, к которым относятся:
- Заряжайте мобильные устройства без подключения к кабелю;
- Реализация электроснабжения беспилотных летательных аппаратов — направление, которое будет пользоваться большим спросом как в гражданской, так и в военной отраслях, поскольку такие устройства в последнее время используются для различных целей.
Та же процедура удаленной передачи данных без использования проводов считалась когда-то прорывом в физических и энергетических исследованиях, сейчас никого не удивляет и стала доступна каждому. Благодаря современному развитию технологий и разработок, транспортировка электроэнергии этим методом становится реальностью и может быть реализована.
Ожидание относительно короткое. Если японцы сдержат свои обещания, в 2020 году вся бытовая техника, компьютеры и портативные устройства смогут освободиться от ига проводов, поработивших человечество. Покупателю останется только принести домой, например, новый телевизор, повесить его на стену и начать смотреть фильм буквально сразу, не задумываясь над тем, на каком экране скрыть некрасивый черный шнур питания. На улицах, в квартирах, в кафе будут встроены беспроводные передатчики энергии, что позволит людям забыть о разряженных батареях. Конечно, на окончательное воплощение таких идей в жизнь уйдет целых десять лет, но у нас есть все шансы на светлое будущее. К тому же уже есть вполне функциональные технологии. Жалко, что Никола Тесла не увидит этот день…
Основные составные части электрической сети
Электроэнергетической сетью (Рис. 5) называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.
Рисунок 5 — Электрическая сеть, и электроустановки для передачи и распределения электрической энергии
Все встречающиеся на практике схемы представляют собой сочетания отдельных элементов — фидеров, магистралей и ответвлений.
Электрические сети, в свою очередь, подразделяются на магистральные электрические сети и распределительные электрические сети.
К магистральным сетям относятся все высоковольтные линии электропередач (ЛЭП), к распределительным – ЛЭП мощностью ниже 110 кВ. Виды электрических сетей представлены на рисунке 6.
Рисунок 6 — Виды электрических сетей
Сети связаны между собой трансформаторными и распределительными подстанциями. Для обеспечения установленных требований, энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций.
Электрические сети делятся по:
- напряжению;
- степени подвижности;
- назначению;
- роду тока и числу проводов;
- схеме электрических соединений:
а) разомкнутые (нерезервированные). Схемы разомкнутых сетей представлена на рисунке 7.
Рисунок 7 — Схемы разомкнутых сетей: а — радиальные (нагрузка только на конце линии); б — магистральные (нагрузка присоединена к линии в разных местах)
б) замкнутые (резервированные) (Рис. 8).
Рисунок 8 — Схемы замкнутых сетей: а — сеть с двухсторонним питанием; б — кольцевая сеть; в — двойная магистральная линия; г сложнозамкнутая сеть (для питания ответственных потребителей по двум и более направлениям)
Магистральные схемы электроснабжения применяются в следующих случаях:
- а) когда нагрузка имеет сосредоточенный характер, но отдельные узлы ее оказываются расположенными в одном и том же направлении по отношению к подстанции и на сравнительно незначительных расстояниях друг от друга, причем абсолютные величины нагрузок отдельных узлов недостаточны для рационального применения радиальной схемы;
- б) когда нагрузка имеет распределенный характер с той или иной степенью равномерности.
По конструкции: электропроводки (силовые и осветительные), токопроводы — для передачи электроэнергии в больших количествах на небольшие расстояния, воздушные линии — для передачи электроэнергии на большие расстояния, кабельные линии — для передачи электроэнергии на далекие расстояния в случаях, когда сооружение ВЛ невозможно.
Наибольшее распространение для местных распределительных сетей получили радиальные, магистральные, смешанные (радиальномагистральные) и петлевые схемы.
При радиальной схеме электроснабжения каждая линия является как бы лучом, соединяющим узел сети (подстанцию, распределительный пункт) с единственным потребителем.
При магистральной схеме электроснабжения одна линия — магистраль — обслуживает, как указано, несколько распределительных пунктов или приемников, присоединенных к ней в различных ее точках.
Смешанные схемы распределительных местных сетей применяются при различном расположении потребителей относительно ЦП и сочетаются принципы построения как радиальной, так и магистральных схем.
К электрическим сетям предъявляются следующие требования: надежность, живучесть и экономичность.
Надежность — основное техническое требование, под которым понимается свойство сети выполнять свое назначение в пределах заданного времени и условий работы, обеспечивая электроприемники электроэнергией в необходимом количестве и надлежащего качества.
Живучесть электрической сети — это свойство выполнять свое назначение в условиях разрушающих воздействий в том числе и в боевой обстановке при воздействиях средств поражения противника.
Экономичность — это минимум затрат на сооружение и эксплуатацию сети при условии выполнения требований надежности и живучести.
Как передать энергию по одному проводу +18
- 21.08.16 13:44
•
ELEKTRO_YAR
•
#279684
•
Гиктаймс
•
•
25600
DIY или Сделай сам, Энергия и элементы питания
Рекомендация: подборка платных и бесплатных курсов 3D-моделирования — https://katalog-kursov.ru/
В интернете достаточно много обсуждений на тему передачи энергии по одному проводу. Обычно для такой передачи энергии подразумевается наличие заземления, хотя на самом деле это не лучший вариант передачи энергии. Лучше всего передавать энергию по оному проводу с помощью схемы, представленной ниже, но сначала несколько опытов, которые можно провернуть с помощью передатчика из данной схемы.Опыт с лампочкой
Если вывод катушки L2 подключить к лампочке с нитью накала, а второй провод лампочки сделать достаточно длинным, нить накала будет гореть. Однако она будет гореть не равномерно, а с постепенным затуханием.Опыт с катушкой вокруг провода
Если сделать катушку, и продеть через нее передающий приемнику энергию провод, то на катушке появится ЭДС, как будто переменное магнитное поле направлено вдоль проводника, а не вокруг него.
Теперь перейдем к самой схеме.
Соединяющий провод можно использовать очень тонкий, в моих опытах провод был диаметром 0.08мм. При хорошо подобранных параметрах катушек транзистор можно использовать без дополнительных резисторов, как нарисовано на схеме. Для кт315 подобное включение работает примерно при 9 вольтах, для кт805 подобное включение может быть работоспособно при 12 вольтах
Важно соблюдать правильное подключение катушек в передающей части схемы, иначе она не заработает. Катушка L2 обычно мотается с большим количеством витков проводом диаметром 0.2 — 0.5 мм
Катушки L2 — L4 должны быть одинаковые! Проверить работоспособность схемы легко, достаточно взять в руки светодиод за одну из его ножек и поднести его к контакту катушки L2. Он должен начать светиться. Диоды выпрямителя на приемной части схемы должны быть высокочастотными. Также лучше поставить на выходе выпрямителя сглаживающий конденсатор. Видео с работой данной схемы
Можно заметить, что схема включения на видео отличается от схемы в статье. В видео база транзистора подключена к резистивному делителю, состоящему из 27 и 240 ом. Остальное работает так же. Аккумулятор на 12 вольт не обязательно ставить мощный, потребление от схемы небольшое и для опытов хватит кроновой батарейки, если устройство будет сделано небольших габаритов по схеме из данной статьи. Конические катушки мотать не нужно, в видео они были использованы, так как других под рукой просто не было.Отличие от других схем
Две схемы, представленные выше, без заземления будут работать тем хуже, чем длиннее соединяющий провод. Причем, это весьма заметно в пределах 3-х метров. При подключении к приемной части массивного проводящего предмета, прием энергии улучшается, однако все равно остается хуже, чем в самой первой схеме данной статьи. Для первой схемы эффективность приема энергии не так сильно зависит от длины соединяющего провода и не требует наличия массивного проводящего предмета в качестве заземления.
Строение атома, положительный и отрицательный ионы
Итак, любое вещество, любого происхождения (вода, дерево, камень, стекло) состоит из более мелких элементов. Они называются молекулами. Взять хотя бы каплю воды. Она состоит из множества отдельных молекул, имеющих знакомую нам химическую формулу H2O. Далее молекулу вещества можно разделить еще на более мелкие частицы – атомы.
Строение вещества
В настоящее время известны всего лишь более ста различных атомов, однако это еще не предел. Атомы могут образовать миллионы разных молекул и соответственно столько же разных веществ.
Молекула воды
Планетарная модель атома
Как всем известно еще со школьной программы, в центре атома находится наиболее тяжелый его элемент — ядро. Вокруг него на определенном расстоянии по разным орбитам перемещаются электроны. Ядро не является цельным элементом, его составляют протоны и нейтроны.
Планетарная модель атома
Электроны обладает отрицательным зарядом, а протоны – положительным. Нейтрон, как видно из самого названия, не проявляет свойств ни тех, ни других зарядов. Иначе говоря, он нейтрален.
Чтобы уяснить суть электричества, поближе познакомимся со строением атомов. Для упрощения некоторых процессов применяется планетарная модель атома. Как в нашей солнечной системе вокруг солнца (ядра) движутся планеты по своей траектории, так и в атоме вокруг ядра движутся электроны. Электрон представляет собой не плотную частичку материи.Это размазанный в пространстве сгусток энергии, наподобие расплюснутой шаровой молнии.
Масса протона приблизительно в 2000 раз превышает массу электрона. Но суммарный положительный электрический заряд всех протонов равен суммарному отрицательному заряду всех электронов. Поэтому при нормальных условиях атом электрически нейтрален и за его пределами не ощущаются никакие силы. Положительные и отрицательные заряды как бы нейтрализуют друг друга.
Рассмотрим периодическую систему химических элементов, известную всем, как таблица Менделеева. В этих элементах все атомы расположены в строгой последовательности: от наиболее легкого до наиболее тяжелого – по величине относительной атомной массе, основную долю которой составляют протоны
Нейтроны также имею массу, но поскольку они не обладают выраженным электрическим зарядом, не будет заострять на них внимание
Периодическая система Менделеева