Основы релейной защиты ›› 3-1. Токовая отсечка и максимальная токовая защита одиночных линий 35 и 110 кВ
Основные условия расчета. Основные условия расчета максимальных токовых защити токовых отсечек, изложенные в Главе 1, справедливы и для линий 35 и 110 кВ без ответвлений и с ответвлениями. В выражении (1-1), коэффициент самозапуска kсзп определяется по суммарному току самозапуска нагрузки всех трансформаторов, подключенных к защищаемой линии и ко всем следующим (по направлению тока) линиям того же напряжения. Для этого в расчетной схеме все нагрузки, подключаемые к каждому трансформатору, представляются сопротивлениями обобщенной или бытовой нагрузки, приведенными к рабочей максимальной мощности трансформатора. Высоковольтные двигатели учитываются отдельно.
Расчет уставок токовой отсечки (ТО)
Чтобы токовая отсечка срабатывала селективно, нужно отстраивать ее от токов КЗ за трансформатором, то есть на стороне 0,4 кВ. Также нужно обеспечить, чтобы токовая отсечка не срабатывала во время бросков токов намагничивания, которые возникают при включении под напряжение ненагруженного трансформатора, которые могут превышать в 3-5 раз номинальный ток силового трансформатора . Однако если мы отстраиваемся от токов КЗ на стороне 0,4 кВ, то, как правило, обеспечивается несрабатывание ТО при бросках токов намагничивания.
Уставка срабатывания ТО, должна выбираться больше от тока 3-х фазного КЗ на стороне 0,4 кВ. Зона действия токовой отсечки охватывает: питающий кабель 10 кВ от ячейки 10 кВ до силового тр-ра и часть обмоток трансформатора.
Для начала мы должны рассчитать ток 3-х фазного КЗ на стороне 0,4 кВ, для этого, рассчитаем сопротивления всех элементов защищаемой линии в нашем случае – это КЛ-10 №2.
Составляем расчетную схему защищаемой линии.
Рис.2 – Расчетная схема
Исходя из расчетной схемы, составляем схему замещения.
Рис.3 – Схема замещения
Расчет ведется в именованных единицах. Активные сопротивления элементов схемы замещения не учитываются. Если длина кабеля не большая, то сопротивление для данного кабеля, можно не учитывать.
3.2 Определяем сопротивление кабеля:
Хк=1/n* Худ.*L=1/1*0,121*0,3=0,0363 Ом;
где:
- Худ.=0,121 Ом/км – удельное сопротивление кабеля АПвЭВнг – 3х95 мм2 (выбирается из каталожных данных Завода-изготовителя);
- n – количество ниток в кабеле;
- L – длина защищаемой линии, км;
Как мы видим из расчета, величина сопротивления кабеля, не значительная и можно было сопротивление кабеля не учитывать при расчете токов КЗ.
3.3 Определяем сопротивление двухобмоточного трансформатора, приведенное к ВН:
3.4 Рассчитав все сопротивления со схемы замещения, определяем суммарное сопротивление:
ХΣ=Хс+Хк+Хтр-ра=0,53+0,0363+11,025=11,59Ом
3.5 Определяем ток трех фазного КЗ, когда возникает повреждение за трансформатором, приведенное к ВН:
3.6 Определяем первичный ток срабатывания защиты:
где: Kотс — коэффициент отстройки, для SEPAM равен 1,1–1,15, согласно рекомендаций Schneider Electric.
3.7 Определяем бросок тока намагничивания трансформатора:
Ic.з2=Котс.*Iном.*Кбр.=1,1*23,12*5=127,16 А;
где: Kбр = 3-5 коэффициент броска тока намагничивания, принимается kбр=5, согласно рекомендаций Schneider Electric.
За расчетный ток принимаем наибольший ток срабатывания защиты Iс.з.1=575,37 > Iс.з.2=127,16. Принимаем – 575,37 А.
3.8 Определяем вторичный ток срабатывания реле:
где:
- Ксх.= 1 – когда вторичные обмотки трансформаторов тока, выполнены по схеме «полная звезда»;
- nт =100/5 — коэффициент трансформации трансформаторов тока.
3.9 Определяем коэффициент чувствительности защиты для случая 2х фазного КЗ, для схемы трех релейного исполнения. Если же у Вас защита выполнена для двух релейной схемы, то нужно еще умножить на 0,5, соответственно чувствительность защиты уменьшится в 2 раза по сравнению со схемой трех релейного исполнения.
Как мы видим Кч, соответствует требованиям ПУЭ (раздел 3.2.21 пункт
3.10 Выбираем время срабатывания токовой отсечки:
В данном случае, токовая отсечка будет срабатывать мгновенно, без выдержки времени, то есть t=0 сек.
Селективность — защита
Селективность защиты не нарушается при внешних коротких замыканиях независимо от состояния фиксации элементов за шинами.
Селективность защиты обеспечивает отключение минимального числа потребителей при повреждении какого-либо участка. Для обеспечения селективности защиты ближайшие к потребителю выключатели должны иметь наименьшую и по мере приближения к источнику питания — возрастающую выдержку времени при отключении. Разность значений времени отключения двух последовательно расположенных выключателей между источником питания и потребителем называется ступенью селективности.
Селективность защиты в электрических сетях — избирательность при автоматическом отключении участков сети. Например, при коротком замыкании в сети участок сети с коротким замыканием должен отключиться аппаратом, расположенным перед этим участком, а не аппаратом, расположенным ближе в источнику питания, так как последний может включать и другие участки сети.
Селективность защиты с отсечкой трансформатора, имеющей время 0 5 сек, обеспечивается.
Селективность защиты плавкими предохранителями в разомкнутых сетях, как было показано выше ( см. § 2.4), достигается или путем соответствующего выбора номинальных токов плавких вставок последовательно установленных предохранителей, или путем соответствующего выбора площадей поперечного сечения плавких вставок.
Селективность защиты питающих линий и подстанции обеспечивается всегда, так как предохранители перегорают практически мгновенно.
Выбор плавких вставок предохранителей для трехфазных трансформаторов. |
Для селективности защиты трансформаторов предохранители выбираются по номинальной силе тока плавкой вставки, исходя из следующих соображений: а) предохранители на стороне низшего напряжения должны защищать трансформатор от перегрузок и от коротких замыканий в сети низкого напряжения. Главный предохранитель на стороне низшего напряжения выбирают по номинальному току трансформатора. При наличии на стороне низшего напряжения нескольких ответвлений для защиты от перегрузок устанавливаются на ответвлениях предохранители, выбираемые по току ответвления; глаиный предохранитель является в этом случае защитой от коротких замыканий на оборке и резервной защитой по отношению к предохранителям ответвлений; б) предохранители на стороне высшего напряжения предназначаются для защиты от повреждений внутри трансформатора и от коротких замыканий на стороне высшего напряжения. Эти предохранители выбирают на 2 — 3-здратный ток для трансформаторов мощностью до 180 ква и на 1 5 — 2-кратный ток для трансформаторов мощностью до 320 ква.
Схема включения максимального реле.| Схема включения максимального реле совместно с реле времени и сигнальным реле. |
Обеспечение селективности защиты различных участков сети вызывает необходимость — определенной последовательности срабатывания реле, установленных в различных ее участках.
Чтобы обеспечить селективность защиты при возможных отклонениях параметров вставок, допущенных при их изготовлении, а также при различных условиях работы предохранителя ( в зависимости от места его установки), необходимо подбирать соответственно величины номинальных токов плавких вставок предохранителей на двух смежных участках линии.
Чтобы обеспечить селективность защиты, токи плавких вставок предохранителей или расцепителей автоматов, установленных в одной цепи, должны по возможности отличаться не менее чем на две ступени.
Чтобы обеспечить селективность защиты при возможных отклонениях параметров вставок, допущенных при их изготовлении, а также при различных условиях работы предохранителя ( в зависимости от места его установки), необходимо подбирать соответственно номинальные токи плавких вставок предохранителей на двух смежных участках линии.
Быстродействие и селективность защиты являются требованиями противоположного характера, и во многих случаях достижение одного из них идет в ущерб другому. В конкретных условиях при выборе рационального технического решения приходится находить компромиссное решение
При выборе типа защиты целесообразно учитывать степень важности защищаемого объекта. Более совершенная и дорогостоящая защита оправдывает себя при мощных преобразовательных установках, не допускающих даже кратковременного перерыва электропитания
В противном случае селективность защиты при внешних коротких замыканиях нарушается. Для второй ступени защиты расчет параметров производится аналогично.
Принцип работы токовых отсечек
При протекании в сети электрического тока ее элементы начинают нагреваться. Это так называемая рабочая температура, позволяющая функционировать в течение длительного времени в обычном режиме.
При коротком замыкании в сети происходит значительное возрастание силы тока. Как правило, это приводит к возгораниям, разрушениям и прочим негативным последствиям. Элементы, способные долго выдерживать действие короткого замыкания, экономически невыгодно производить.
Величина тока, вызывающая срабатывание защиты, носит название уставки. Ее значение должно обеспечивать отключение цепи до того момента, когда начнутся разрушения. Для создания токовой отсечки существуют различные способы. Чаще всего эта процедура проводится с использованием электромагнитных реле. Замыкание контактов в этих устройствах происходит под влиянием электромагнитной силы. Таким образом, прибор подает сигнал, отключающий защищаемый элемент. Этот же принцип применяется в различных конструкциях автоматических выключателей.
Эффективным средством защиты являются предохранители. Здесь ведущую роль играет температура, возрастающая под действием тока и оказывающая свое воздействие. Когда ее значение достигает определенного предела, происходит разрушение плавкой вставки предохранителя и разрыв электрической цепи.
Устройство АБ-2/4
Для крепления данного прибора у него имеется четыре изолятора, которые располагаются на раме специальной выкатной телеги. В конструкции имеется магнитопровод, которые является основной электромагнитного выключателя. Устройство быстродействующего выключателя подразумевает наличие специальной дугогасительной камеры. В данном случае она представлена лабиринтно-целевым типом и способна растянуть дугу до 4,5 метра. Для ее функционирование требуется магнитное дутье, которое в данном случае развивается за счет мощных полюсов, расположенных снаружи по обеим сторонам камеры.
Сами же провода не находятся без защиты, а встроены в специальный магнитопровод. С двух сторон от такого провода располагается камера катушки магнитного дутья. Вверху стенки данной камеры несколько расходятся и здесь же располагаются несколько, перемежающихся между собой клиновидных перегородок, образующих необходимый лабиринт. Таким образом, удается создать щель зигзагообразного типа, при помощи которой и удается растягивать дугу.
В самой верхней части камеры лабиринт прерывается. Здесь располагаются специальные пламегасительные решетки, которые представлены в виде нескольких пакетов тонких стальных пластин. Они предназначены для охлаждения, а также для деионизации газов и пламени, которыми сопровождается появление дуги.
Принцип действия защиты
Но контакты их не действуют напрямую на выходное реле или на отключающую катушку выключателя. На этом пути дополнительно включаются нормально замкнутые контакты реле напряжения.
Выходные контакты реле тока подключаются параллельно друг другу. Последовательно с ними подключаются также собранные в параллель контакты реле напряжения, контролирующих все три линейных напряжения.
А такое бывает только в случае короткого замыкания, при прочих режимах, считающихся номинальными, глубокой посадки напряжения не происходит. Соответственно, защита при штатных перегрузках работать не будет.
По количеству токовых реле конструкция защиты может быть в трехфазном (для генераторов) или двухфазном исполнении. Но во всех случаях количество реле напряжения все равно должно равняться трем.
Если предполагается защита при однофазных то дополнительно к контактам реле напряжения подключается нормально разомкнутый контакт реле напряжения нулевой последовательности, подключенного к соответствующей обмотке ТН.
Предотвращение излишних действий защиты на отключение. В цепи отключения устанавливается накладка для вывода защиты из действия. А вывод этот может потребоваться.
Ложное действие защиты возможно при неисправностях в цепях ТН, сопровождающихся срабатыванием одного или нескольких реле в цепях блокировки. В основном эти случаи возникают в результате перегорания предохранителей на стороне высокого или низкого напряжения .
Поэтому в схему РЗА обязательно входит узел контроля исправности этих цепей.
Интересное видео о настройке и работе ТО и МТЗ смотрите в видео ниже:
Обычной практикой является работа на сигнал, поскольку совпадение неисправности ТН с перегрузкой на присоединении, защищенной МТЗ с блокировкой по напряжению, считается маловероятным. У оперативного персонала есть время на принятие решения: вывести защиту из действия или найти неисправность в цепи .
Файл-архив ›› Библия релейной защиты и автоматики. Федоров В.А.
В уникальном издании «Библия релейной защиты и автоматики» Федорова В.А. материал изложен в форме вопросов и ответов. В книге даются общие сведения по основам электротехнике, электробезопасности, электрооборудовании подстанций. Большая часть учебника посвящена материалам РЗА, начиная от терминологии, описаний простых защит, схем соединений ТТ и ТН, оперативным цепям РЗА, релейной защит ВЛ 110кВ и выше (ЭПЗ-1636, ШДЭ, ПДЭ, ДФЗ), общеподстанционным защитам, трансформатора и автотрансформатора, автоматики и управления и другим вопросам РЗА.
Книга будет полезна как начинающим так и опытным релейщикам. Библия релейщика
Виды максимально-токовых защит
В электрических сетях используют 4 разновидности МТЗ. Их применение диктуется условиями, которые требуется создать для уверенной работы электрооборудования.
МТЗ с независимой от тока выдержкой времени
В таких устройствах выдержка времени не меняется. Для задания уставок периода, достаточного для активации реле с независимыми характеристиками, учитывают ступени селективности. Каждая последующая выдержка (в сторону источника тока) увеличивается от предыдущей на промежуток времени, соответствующий ступени селективности. То есть, при расчётах необходимо соблюдать условия селективности.
МТЗ с зависимой от тока выдержкой времени
В данной защите процесс задания уставок МТЗ требует более сложных расчётов. Зависимые характеристики, в случаях с индукционными реле, выбирают по стандарту МЭК: tсз = A / (kn — 1), где A, n – коэффициенты чувствительности, k = Iраб / Iср — кратность тока.
Из формулы следует, что выдержка времени уже не является константой. Она зависит от нескольких параметров, в т. ч. и от силы тока, попадающего на обмотки реле, причём эта зависимость обратная. Однако выдержка не линейная, её характеристика приближается к гиперболе (рис. 3). Такие МТЗ используют для защиты от опасных перегрузок.
Рисунок 3. Характеристика МТЗ с зависимой выдержкой
МТЗ с ограниченно-зависимой от тока выдержкой времени
В устройствах данного вида релейных защит совмещено две ступени защиты: зависимая часть с гиперболической характеристикой и независимая. Примечательно, что времятоковая характеристика независимой части является прямой, плавно сопряжённой с гиперболой. При малых кратностях критичных токов характеристика зависимого периода более крутая, а при больших – пологая кривая (применяется для защиты электромоторов большой мощности).
МТЗ с пуском (блокировкой) от реле минимального напряжения
В данном виде дифференциальной защиты применена комбинация МТЗ с использованием влияния минимального напряжения. В электромеханическом реле произойдёт размыкание контактов только тогда, когда возрастание тока в сети приведёт к падению разницы потенциалов. Если падение превысит нижнюю границу напряжения уставки – это вызовет отработку защиты. Поскольку уставка задана на падение напряжения, то реле не среагирует на резкие скачки тока в сети.
Слайд 22Увеличение Ip.max, вызванное самозапуском АД, оценивается коэффициентом запуска kз. Учет самозапуска
АД является обязательным. Исходя из этого Iвоз > kз Ip.max
При выполнении этого условия всегда выполняется и предыдущее условие, т.к. возврата максимальных реле всегда меньше тока срабатывания. Поэтому для отстройки МТЗ от токов нагрузки за исходное принимается последнее выражение. Руководствуясь им, ток возврата выбирают равным Iвоз = kзап kз Ip.max.
Коэффициент запаса kзап учитывает возможную погрешность в величине тока возврата реле и принимается равным 1,1-1,2.
Ток срабатывания МТЗ находится из соотношения, определяющего связь между током возврата и срабатывания Iвоз/ Iс.з = kвоз. Подставляя в это выражение значение Iвоз, находим соответствующий ему ток срабатывания:Iс.з = kзап/ kвоз kз Ip.max.
Основные разновидности отсечки
Описываемый способ (в том числе и для трансформаторов) делится на несколько видов. На сегодняшний день известно две разновидности токовой отсечки. Отличаются они друг от друга временем срабатывания и выдержке. Рассмотрим каждый вид более подробно:
- С выдержкой времени. В такую отсечку во время производства включают специальное устройство, позволяющее задавать временные параметры. Диапазон срабатывания отсечки при участии специального устройства не превышает 6 секунд. Устройство, помогающие регулировать и одновременно контролировать время подачи тока называют автоматическим селективным выключателем. Надо заметить, что селекция используется не всегда и она необязательна. Для максимальной защиты всей линии зачастую используется устройства с дифференциальной защитой.
- Мгновенная отсечка. Все действия системы контролируются собственным временем токовой отсечки. Все происходит автоматически. Принцип действия не основывается на дополнительном временном устройстве (то есть выдержке). Главный элемент во мгновенном виде — это токовое реле. Реле отвечает за подачу отключающего сигнала расцепителю выключателя. Наряду с реле, используются и некоторые вспомогательные элементы. Среди них выделяют специальные релейные устройства, которые установлены с целью подачи своевременного сигнала на разрыв. Диапазон срабатывания в автоматическом режиме мгновенной отсечки — от 4 до 6 секунд.
Исходя из рассмотренного, можно заключить, что защита выключателям и трансформаторам предоставляется самыми различными способами. Благодаря продуманным подходам надёжную защиту получают не только начальные или конечные участки цепей, но и вся электрическая цепь.
Схемы защиты МТЗ
Применяется несколько вариантов конструкций, различающихся устройством.
Трехфазная схема защиты МТЗ на постоянном оперативном токе
Трехфазная конструкция
В главный блок входят два реле: времени и пуска. Используются также указательное реле и еще одно добавочное, ставящееся тогда, когда временное реле неспособно замкнуть цепочку катушки выключения.
Двухфазные схемы защиты МТЗ на постоянном оперативном токе
Они применяются, когда нужно, чтобы система включалась лишь при замыкании между фазами. Существуют схемы с одиночным реле и с парой.
Двухрелейная схема
Ее плюс – реагирование на любые межфазовые замыкания. Минус – меньшая восприимчивость при двухфазных замыканиях за трансформатором. Повысить ее вдвое можно, поставив третье реле. Схема в основном используется для конструкций с изолированной нейтралью – случающиеся в них замыкания происходят только между фазами. Возможно применение при глухом заземлении, но тогда для предотвращения однофазного замыкания ставится добавочная конструкция, срабатывающая при токе нулевой последовательности.
Одно-релейная схема МТЗ
Плюс схемы – легкость конструирования. Минусы – наименее высокая чувствительность, несрабатывание при некоторых типах замыканий с двумя фазами.
Выбор тока срабатывания защиты МТЗ
Выбор осуществляется с расчетом, чтобы установка уверенно срабатывала при повреждающих воздействиях, но не проявляла активности при недолгих толчках (к примеру, когда запускается электродвигатель) или высоком токе нагрузки. Дифференциация последнего от ситуации, когда должна активизироваться защита, является основной задачей. Также установка не должна быть излишне восприимчивой, иначе цепь будет отключаться, когда это не нужно.
Должны соблюдаться условия:
- реле не должны активизироваться нагрузочным током, поэтому параметр, при котором срабатывает МТЗ, должен быть больше максимального нагрузочного показателя;
- возвратный ток реле должен превышать нагрузочное значение, идущее по защите после окончания замыкания – это нужно для возврата реле в начальное положение.
Инсталляция МТЗ
Поэтому чем ближе к ИП установлен блок защитного устройства, тем обширнее участок сети на возникновение, неисправности в котором она будет реагировать. К примеру, рассмотрим защиту понижающего трансформатора. Автоматика, установленная на кабель высокого напряжения ближе к ИП, среагирует на возникновение неисправности этого кабеля, устройств коммутации, самого трансформатора, проводки низкого напряжения и подключенных к ней потребителей. А при ее установке на шины пониженного напряжения возникающие дефекты трансформатора и подвода питающего напряжения останутся «незамеченными».
Следовательно, для максимального контроля участка сети защитой ее необходимо устанавливать на кабель, подающий питание возможно ближе к источнику. Но 1 защитное устройство для всего участка сети удобно в эксплуатации только при небольшом количестве потребителей на нем. Так как защитное отключение участка с большим числом электроприемников, во-первых, обесточивает не только вышедшей из строя потребитель, но и все исправные. А во-вторых не позволяет определить, в какой зоне произошла авария. Поэтому для удобства работы и облегчения содержания электросети в исправном состоянии следует также установить автоматику на стороне низкого напряжения.
Примеры и описание схем МТЗ
С целью защиты обмоток трансформаторов, а также других элементов сетей с односторонним питанием используются различные схемы.
МТЗ на постоянном оперативном токе.
Особенность данной схемы в том, что управление элементами защиты осуществляется выпрямленным током, который меняет полярность, реагируя на аварийные ситуации. Мониторинг изменения напряжения выполняют интегральные микроэлементы.
Для защиты линий от последствий междуфазных замыканий используют двухфазные схемы на двух, либо на одном токовом реле.
Однорелейная на оперативном токе
В данной защите используется токовое пусковое реле, которое реагирует на изменение разности потенциалов двух фаз. Однорелейная МТЗ реагирует на все межфазные КЗ.
Схема на 1 реле
Преимущества: одно токовое реле и всего два провода для подсоединения.
Недостатки:
- сравнительно низкая чувствительность;
- недостаточная надёжность – при отказе одного элемента защиты участок цепи остаётся незащищённым.
Однорелейка применяется в распределительных сетях, где напряжение не превышает 10 тыс. В, а также для безопасного запуска электромоторов.
Двухрелейная на оперативном токе
В данной схеме токовые цепи образуют неполную звезду. Двухрелейная МТЗ реагирует на аварийные междуфазные короткие замыкания.
Схема на 2 реле
К недостаткам этой схемы можно отнести ограниченную чувствительность. МТЗ выполненные по двухфазным схемам нашли широкое применение, особенно в сетях, где используется изолированная нейтраль. Но при добавлении промежуточных реле могут работать в сетях с глухозаземлённой нейтралью.
Трехрелейная
Схема очень надёжная. Она предотвращает последствия всех КЗ, реагируя также и на однофазные замыкания. Трехфазные схемы можно применять в случаях с глухозаземлённой нейтралью, вопреки тому, что там возможны ситуации с междуфазными так и однофазными замыканиями.
Из рисунка 4 можно понять схему работы трёхфазной, трёхлинейной МТЗ.
Рисунок 4. Схема трёхфазной трёхрелейной защиты
Схема двухфазного трёхрелейного подключения МТЗ изображена на рисунке 5.
Рис. 5. Схема двухфазного трёхрелейного подключения МТЗ
На схема обозначены:
- KA – реле тока;
- KT – реле времени;
- KL – промежуточное реле;
- KH – указательное реле;
- YAT – катушка отключения;
- SQ – блок контакт, размыкающий цепь;
- TA – трансформатор тока.
Максима́льная то́ковая защи́та (МТЗ)
— вид релейной защиты, действие которой связано с увеличением силы тока в защищаемой цепи при возникновении короткого замыкания на участке данной цепи. Данный вид защиты применяется практически повсеместно и является наиболее распространённым в электрических сетях.
Читать также: Вибротрамбовка своими руками с электродвигателем
Разновидности максимально-токовых защит
Особенности дифференциальной защиты силового оборудования
Ориентируясь на условия работы в конкретной электросети, можно выбрать один из четырех типов системы.
МТЗ с независимой от тока выдержкой времени
Параметр задержки здесь неизменен, период активации зависит только от ступени селективности: на каждом последующем отрезке время увеличивается на эту величину.
МТЗ с зависимой от тока выдержкой времени
Используется расчет выдержки по нелинейной формуле. Параметр зависит от величины тока на обмотках. Используется в системах, где предохранение от избыточных нагрузок имеет особенную значимость для безопасности.
МТЗ с ограниченно-зависимой от тока выдержкой времени
Здесь совмещены две компоненты: не зависящая от тока часть и зависящая, причем у последней время-токовая характеристика имеет вид гиперболы. Чем больше перегрузка, тем более пологий вид имеет графическое представление. Такая установка используется в высокомощных электромоторах.
МТЗ с пуском (блокировкой) от реле минимального напряжения
Здесь инициатором размыкания контактов становится разность потенциалов. Уставка привязывается к падению напряжения ниже определенной границы.
МТЗ линии 6-35 кВ
Я уже рассматривал МТЗ, но, повторение — мать ученья. Максимальная токовая защита с выдержкой времени выступает в качестве первой ступени трехступенчатой защиты линии. Для расчета необходимо рассчитать ток срабатывания защиты, ток уставки, выдержку времени и отстроиться от соседних защит.
1) На первом этапе определяем ток срабатывания защиты с учетом токов самозапуска и других сверхтоков, которые протекают при ликвидации КЗ на предыдущем элементе:
в данной формуле мы имеем следующие составляющие:
Iс.з.
— ток срабатывания защиты 2РЗ, величина, которую мы и определяем
kн
— коэффициент надежности, который на самом деле можно считать скорее коэффициентом отстройки для увеличения значения уставки; для микропроцессорных равен 1,05-1,1, для электромеханических 1,1-1,4.
kсзп
— коэффициент самозапуска, его смысл в том, что при КЗ происходит просадка напряжения и двигатели самозапускаются. Если нет двигателей 6(10) кВ, то коэффициент принимается 1,1-1,3. Если нагрузка есть, то производится расчет при условии самозапуска ЭД из полностью заторможенного состояния. Коэффициент самозапуска определяется, как отношение расчетного тока самозапуска к максимальному рабочему току. То есть зная ток самозапуска, можно не узнавать максимальный рабочий ток, хотя без этого знания не получится рассчитать ток самозапуска — в общем, сократить формулу не удастся особо.
kв
— коэффициент возврата максимальных реле тока; для цифровых — 0,96, для механики — 0,65-0,9 (зависит от типа реле)
Iраб.макс.
— максимальный рабочий ток с учетом возможных перегрузок, можно узнать у диспетчеров, если есть телефон и полномочия. Для трансформаторов до 630кВА = 1,6-1,8*Iном, для трансформаторов двухтрансформаторных подстанций 110кВ = 1,4-1,6*Iном.
2) На втором этапе определяем ток срабатывания защиты, согласуя защиты Л1 и Л2:
Iс.з.посл.
— ток срабатывания защиты 2РЗ
kн.с.
— коэффициент надежности согласования, величина данного коэффициента от 1,1 до 1,4. Для реле РТ-40 — 1,1, для РТВ — 1,3…1,4.
kр
— коэффициент токораспределения, при одном источнике питания равен единице. Если источников несколько, то рассчитывается через схемы замещения и сопротивления элементов.
Первая сумма в скобках
— это наибольшая из геометрических сумм токов срабатывания МТЗ параллельно работающих предыдущих элементов.Вторая сумма — геометрическая сумма максимальных значений рабочих токов предыдущих элементов, кроме тех, с которыми происходит согласование.
3) На третьем этапе выбираем наибольший из токов, определенных по условиям 1) и 2) и рассчитываем токовую уставку:
kсх
— коэффициент схемы, данный коэффициент показывает во сколько раз ток в реле больше, чем ток I2 трансформатора тока при симметричном нормальном режиме работы; при включении на фазные токи (звезда или разомкнутая звезда) равен 1, при включении на разность фазных токов (треугольник) равен 1,73.
nт
— коэффициент трансформации трансформатора тока.
4) Далее определяется коэффициент чувствительности, который должен быть больше или равен значения, прописанного в ПУЭ.
Отношение минимального тока, протекающего в реле, при наименее благоприятных условиях работы, к току срабатывания реле (уставке). Для МТЗ значение kч должно быть не менее 1,5 при кз в основной зоне защиты и не менее 1,2 при кз в зонах дальнего резервирования.
5) Определяемся с уставкой по времени
Смысл уставок по времени в следующем: если у нас КЗ как на рисунке выше, то сначала должен отключиться выключатель Л1 (находящийся ближе к КЗ), это необходимо, чтобы оставить в работе неповрежденные участки системы.
То есть tс.2рз=tс.1рз+dt
, где дельта t — ступень селективности. Эта величина зависит от быстродействия защит (в частности точности работы реле времени) и времени включения-отключения выключателей.
Если предыдущая РЗ является токовой отсечкой или же РЗ выполнена на электронных (полупроводниковых) реле — dt можно принять 0,3с. Если же в РЗ используются электромеханические реле, то dt может быть 0,5…1,0. Для различных реле эта величина может доходить до нескольких секунд.
Как было написано выше, особенностью МТЗ является накапливание выдержек времени от элемента к элементу. И чем больше величина dt, тем большей будет отдаленная уставка. Для решения этой проблемы следует устанавливать цифровые РЗ (dt=0,15…0,2с) и одинаковые выключатели. Ведь, если выключатели одного типа, то и время срабатывания у всех одинаковое. А если, оно невелико, то и суммарная величина будет мала.
В общем выбор мтз состоит из трех этапов:
- несрабатывание 2РЗ при сверхтоках послеаварийных режимов
- согласование 2РЗ с 1РЗ
- обеспечение чувствительности при КЗ в конце Л1(рабочая зона) и в конце Л2 (зона дальнего резервирования)
Технические характеристики МТЗ 82
Общие характеристики
Масса конструкционная, кг | 3750 |
Масса в состоянии отгрузки с завода, кг | 3850 |
Масса эксплуатационная, кг | 4000 |
Масса максимально допустимая (полная), кг | 6500 |
База, мм | 2450 |
Габаритные размеры: длина, мм | 3930 |
Габаритные размеры: ширина, мм | 1970 |
Габаритные размеры: высота, мм | 2800 |
Колея по передним колесам (min), мм | 1430 |
Колея по передним колесам (max), мм | 1990 |
Колея по задним колесам (min), мм | 1400 |
Колея по задним колесам (max), мм | 2100 |
Наименьший радиус поворота, м | 4,5 |
Агротехнический просвет трактора под рукавами передних и задних полуосей, не менее, мм | 645 |
Размеры шин передних колес | 11,2-20 |
Размеры шин задних колес | 15,5 R38 |
Удельное давление на грунт, кПа | 140 |
Емкость топливного бака, л | 130 |
Скорость движения: транспортная, км/ч max | 34,3 |
Скорость движения: рабочая, км/ч max | 15,6 |
Грузоподъемность, кг | 3200 |
Марка | ММЗ |
Модель | Д-243 |
Тип | 4-х тактный, дизельный, безнаддувный |
Число цилиндров | 4 |
Диаметр цилиндра, мм | 110 |
Ход поршня, мм | 125 |
Рабочий объем, л | 4,75 |
Номинальная частота вращения, об/мин | 2200 |
Мощность номинальная, кВт (л.с.) | 59,6 (81) |
Крутящий момент при номинальной мощности, Н.м | 258.700012 |
Максимальный крутящий момент, Н.м | 298 |
Коэффициент запаса крутящего момента, % | 15 |
Удельный расход топлива при эксплуатационной мощности, г/кВт.ч | 229 |
Удельный расход топлива при номинальной мощности, г/кВт.ч | 226 |
Мощность генератора номинальная, кВт | 1,15 |
Номинальное напряжение электропотребителей бортовой электросети, В | 12 |
Номинальное напряжение системы электропуска, В | 12 (24 – под заказ) |
Муфта сцепления | Фрикционная, однодисковая |
Коробка передач | Механическая |
Число передач вперед | 18 |
Число передач назад | 4 |
Тип моста | Разрезная, раздвижная балка |
Тип колесного редуктора | Конический |
Тип дифференциала | Самоблокирующийся повышенного трения |
Привод ПВМ | Два карданных вала с промежуточной опорой |
Управление ПВМ | Механическое |
Тип моста | Составной |
Тип колесного редуктора | Цилиндрический |
Тип дифференциала | Конический с четырьмя сателлитами |
Привод ЗМ | Постоянный |
Рабочие | – |
Рабочие на задние колеса | Дисковые, сухие |
Стояночные | – |
Стояночные на задние колеса | Дисковые, сухие |
Пневмопривод управления тормозами прицепов | + |
Тип | Унифицированная |
Дополнительное сиденье | под заказ |
Отопитель | + |
Задний ВОМ | + |
– задний ВОМ независимый I (при номинальной частоте двигателя), об/мин | 540 |
– задний ВОМ независимый II (при номинальной частоте двигателя), об/мин | 1000 |
– задний ВОМ синхронный I, об/м пути | 3,4 |
Тип | Гидрообъемное |
Тип механизма поворота | Гидроцилиндр и рулевая трапеция |
ГНС задняя | + |
– тип задней ГНС | Раздельно-агрегатная |
– грузоподъемность на оси шарниров нижних тяг задней ГНС, кгс | 3200 |
– количество гидровыводов задней ГНС | 3 |
Тип насоса | Шестеренный |
Рабочий объем насоса, см3/об | 32 |
Максимальное давление, МПа | 20 |
Производительность насоса, л/мин | 45 |
Емкость гидросистемы, л | 25 |
Тип | Колесная |
Колесная формула | 4х4 |
Цена МТЗ 82
Цены на новый МТЗ 82 2016 года выпуска колеблются в пределах от 710 000 до 1 300 000 рублей (в зависимости от региона и комплектации).
Б/у трактор МТЗ 82 можно приобрести от 180 000 рублей.
Отличие цепи постоянного тока и необходимость БВ
Здесь важно отметить, что между цепями переменного и постоянного тока имеется существенное отличие, из-за которого и требуется использование быстродействующих выключателей. В первом варианте происходит периодическое снижение тока до нуля и угасание дуги, во втором же ток постоянно нарастает до достижения определенного значения
Причем, как показывает практика, требуется всего несколько сотых секунд, чтобы ток достиг максимального значения. Из-за этого производить его отключение гораздо труднее. Кроме того, обычно отключение цепи постоянного тока производится гораздо раньше, чем ток достигнет максимальных значений.
Быстродействующие выключатели обычно имеют пределы отключения от 15 до 27 кА. В зависимости от определенных параметров самой цепи, такого устройства будет вполне достаточно для обеспечения своевременного отключения.