Схема реверса трехфазного двигателя в однофазной сети
Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.
Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.
Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.
Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.
Переменная сеть: мотор 380 к сети 380
Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:
Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:
Для подключения дополнительно понадобятся:
- Магнитный пускатель (или контактор) – КМ2;
- Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).
Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.
Для запуска двигателя:
- Включите автоматы АВ1 и АВ2;
- Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
- Двигатель работает.
Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.
Реверс однофазных синхронных машин
Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.
Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.
В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:
- Сетевое напряжение подается на клеммы W2 и V1.
- Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
- Концы второй обмотки подключают к клеммам W2 и V2.
- Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
- Клемма W1 остается свободной.
Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».
Подписка на рассылку
Чтобы механизмы на производстве или в быту, будь-то дерево или металлообрабатывающие станки, консольный насос, конвейерная лента, кран-балка, заточной станок, электрическая газонокосилка, кормоизмельчитель или другое устройство работали без поломок, необходимо, в первую очередь, чтобы вал электродвигателя вращался в правильную сторону.
Во избежание ошибок и не допуска вращения вала механизма в противоположную сторону согласно пункту 2.5.3 «Правил технической эксплуатации электроустановок потребителей» на корпусе самого механизма и приводном двигателе должны быть нанесены стрелки направления вращения электродвигателя.
Направление вращения вала электродвигателя
Определение направления вращения электродвигателя выполняется со стороны единственного конца вала. В том случае если двигатель имеет два конца вала, то вращение определяют со стороны вала, который имеет больший диаметр. Согласно ГОСТ 26772-85 правому направлению соответствует движение вала по часовой стрелке. У наиболее распространенных трехфазных двигателей с короткозамкнутым ротором вращение вала в правую сторону будет осуществляться, если последовательность фаз, по которым подается напряжение на концы обмоток статора, будет соответствовать алфавитной последовательности их маркировки – U1, V1, W1.
Правостороннее вращение
Для однофазных двигателей с короткозамкнутым ротором вращение вала по часовой стрелке будет выполняться при условии, когда фаза будет подаваться на конец рабочей обмотки.
Изменение направления вращения вала в трехфазных электродвигателях
Эксплуатация некоторых механизмов требует левостороннего вращения вала. Зная, как изменить направление вращения электродвигателя, это можно сделать без какой-либо доработки или переделки самого приводного двигателя. Для смены направления движения нужно:
- обесточить электродвигатель;
- снять крышку клеммной коробки;
- переставить жилы силового кабеля в соответствие со схемой изображенной на рис. 3: жилу с изоляцией черного цвета (L3) переподключить на контакт V1 в клеммной коробке, а жилу коричневого цвета (L2) на контакт W1.
На тумблере с автоматическим отключением
Предыдущая схема проста и удобна в управлении и ее, к примеру, можно использовать для управления моторами стеклоподъемников в автомобиле. Но для этого конструкцию придется немного доработать. Ведь управляя стеклоподъемником вручную, сложно определить, что стекло уже полностью открылось/закрылось и пора останавливать мотор. Взглянем на схему ниже.
Перед нами все та же конструкция с тумблером, но она дополнена двумя диодами и двумя концевыми выключателями. Предположим, наш мотор управляет приводом стеклоподъемника автомобиля. Стекло полуоткрыто, концевые выключатели S2 и S1, расположенные в верхней и нижней части окна, замкнуты, диоды D1 и D2 закорочены.
Переводим флажок S1 в одно из положений. К примеру, в верхнее по схеме. На мотор M1 начинает поступать напряжение – «плюс» на верхний вывод, «минус» на нижний. Стекло поднимается и, в конце концов, нажимает на толкатель концевика S2, заставляя его сработать. Контакты S2 размыкаются, и в работу включается диод D1. Поскольку он включен в обратном направлении, то тут же запирается, запрещая работу двигателя. Теперь сколько бы мы ни давили на флажок, мотор не запустится и не даст разнести стеклоподъемный механизм.
Переводим флажок S1 в нижнее по схеме положение. Теперь «плюс» подается на нижний по схеме вывод обмотки мотора и диод D1 оказывается включенным в прямом направлении. Он свободно пропускает ток, несмотря на то, что S2 разомкнут и разрешает работу электромотора, который опускает стекло. Как только стекло будет полностью опущено, сработает S2, останавливая М1. Ниже опустить его мы не сможем, но сможем поднять, поскольку опускаясь, стекло отпустило S2 и он снова замкнут.
Вот вроде и все. Схемы, конечно, исключительно просты и для тех, кто более-менее знаком с электроникой, не являются откровением. Но тех, кто только начал познавать электромир, эти схемы, возможно, чему-нибудь научат.
Где еще используются реверсивные пускатели?
Область применения двойных пусковых реле довольно широка. Она не ограничивается одними только электродвигателями. Необходимость изменения направления вращения или перемещения приводных механизмов может возникнуть также в других случаях.
К примеру, каждый человек имеет дома систему водоснабжения, отопления, где всегда есть место различной запорной арматуре. Для промышленных масштабов, при больших расходах, диаметрах трубопроводов, большой точности контроля расхода, обычными кранами не обойтись. Здесь используются задвижки электрической, а также механической системой управления рабочим органом. Вращение диска или перемещение задвижки происходит в разных направлениях, а значит, применение реверсивных схем пуска обосновано.
Не удаляясь далеко, можно найти реверсивные пускатели типа ПМЛ или другие в подъемной системе лифтов. Движение вверх-вниз происходит за счет изменения направления вращения главного барабана.
Изменение направления вращения двигателя, связанных с ним исполнительных механизмов – довольно востребованная процедура. При этом питание от трехфазной сети происходит через промежуточное коммутирующее реле – реверсивный магнитный пускатель типа ПМЛ 1500 или любой другой.
Реверсивный пуск асинхронного трехфазного электродвигателя
Подписка на рассылку
В процессе эксплуатации трехфазного асинхронного электродвигателя может возникнуть ситуация, когда требуется поменять направление вращения вала.
Процесс реверсивного пуска электродвигателя
Реверсивный пуск трехфазного асинхронного электродвигателя осуществляется посредством предварительной остановки. То есть сначала следует отключить вращающийся двигатель, после чего нужно дождаться полной его остановки. Лишь после остановки двигателя следует включать обратное вращение. В таком случае пускатель управляет электродвигателем. Мощность пускателя при включении реверса должна быть в 1,5–2 раза больше, чем максимальная коммутационная мощность пускателя. Это во многом зависит от состояния контактов, их устойчивости к износу. В таком режиме пускатель работает без механической блокировки.
Особенности магнитных пускателей реверсивного пуска
Для осуществления реверсивного пуска применяют специальные пускатели. Магнитные пускатели для реверса электродвигателя — это обычные пускатели, которые укреплены на основании двигателя и посредством электрических соединений обеспечивают электрическую блокировку. Она осуществляется посредством нормально-замкнутых блокировочных контактов, которые есть на пускателях, предотвращающих возможность включения одного пускателя при включенном состоянии другого.
При включении реверсивного магнитного пускателя предусматривается нулевая защита, реализуемая с помощью нормально-открытого контакта пускателя, который предотвращает случайное его включение при возникновении напряжения.
Некоторые реверсивные пускатели также оснащаются блокировкой, располагающейся на основании. Она также необходима, чтобы предотвращать возможное одновременное включение пускателей. Следует отметить, что нормальная электрическая блокировка позволяет отказаться от механической.
Тепловые реле и защита от пыли и влаги
Часто магнитные пускатели имеют защиту от пыли и брызг. Такие варианты оснащаются оболочкой в виде резиновых уплотнений, которая не допускает попадания внутрь прибора пыли и влаги.
Некоторые пускатели имеют также тепловые реле. Они необходимы для обеспечения тепловой защиты электродвигателя от перегрузок, которые длятся недопустимое для данной конструкции время. Тепловые реле защищают трехфазный асинхронный двигатель при обрыве фазы питающего напряжения и при токовой перегрузке большой продолжительности.
Монтаж магнитных пускателей асинхронных электродвигателей
Монтаж магнитных пускателей должен происходить на жесткой, хорошо укрепленной вертикальной поверхности. При наличии теплового реле такие конструкции следует монтировать таким образом, чтобы разность температуры воздуха, который окружает пускатель и электродвигатель, была наименьшей.
Для недопущения случайных срабатываний очень важно не ставить пускатели в тех местах, которые подвержены резким толчкам, ударам и тряске. Важно также, чтобы пускатели не были установлены рядом с приборами, которые отличаются большим тепловыделением
Перед началом использования магнитного пускателя производится наружный осмотр приборов, для того чтобы убедиться в том, что все его части исправны. Также следует проверить номинальное напряжение, которое подается на катушку. Во включенном состоянии допускается небольшое характерное гудение электромагнита.
Уход за магнитными пускателями в процессе эксплуатации
Уход за магнитными пускателями в процессе эксплуатации в первую очередь подразумевает их защиту от попаданий влаги, пыли и грязи. Следует контролировать, чтобы винты контактных зажимов всегда были затянуты. Время от времени нужно проверять состояние контактов. В случае их оплавления последующая зачистка может значительно уменьшить время эксплуатации всего прибора.
Срок службы пускателя во многом зависит от тех условий, в которых он работает, — чем реже им пользуются и чем менее агрессивна окружающая его среда, тем ниже вероятность его поломки.
Подключение однофазного двигателя
Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.
Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки. Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом – ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель.
В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный. И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.
Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.
Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты – отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще – мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.
Чтобы запустить двигатель с пусковой обмоткой необходимо подключить его по такой схеме:
Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки.
При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.
Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов. Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.
Для подключения конденсаторного двигателя пусковая кнопка не нужна. Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.
Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.
Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.
Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами. Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.
В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону. Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.
Реверс электродвигателя — полное описание функций реверсирования
Реверс – это изменение направления вращения электродвигателя. Выполнить реверс можно изменив полярность приходящего на пускатель, питающего напряжения. Это могут быть регуляторы, используемые для двигателей постоянного тока.
Реверс можно выполнить, используя перемену чередования фаз в сети переменного тока. Это действие выполняется в автоматическом режиме при замене полярности сигнала задания, или после поступления определенной команды на нужный логический вход.
Реверс можно осуществить при помощи информации, которая передается по полевой шине, эта возможность входит в определенный набор стандартных функциональных способностей и свойственна большинству современных регуляторов, используемых в цепях переменного тока.
Рис№1. Тезус U(магнитный пускатель) с реверсивным блоком
Основные методы реверсирования
В настоящее время, уже достаточно редко, используется контакторный способ.
Существует статический способ, он заключается в изменении полярности на выходе преобразователя в обмотке якоря или при изменении направления прохождения тока возбуждения. Для этого способа свойственно наличие большой постоянной времени обмотки возбуждения, что не всегда удобно.
Рис. №2. Реверсирование двигателя с помощью магнитного пускателя.
При управляемом торможении механизмов, обладающих высоким моментом инерции нагрузки, необходимо вырабатываемую электрической машиной энергию, возвращать обратно в основную электрическую сеть.
Используя процесс торможения регулятор выступает в качестве инвертора, производимая энергия обладает отрицательным зарядом.. таким образом регулятор может осуществить две операции одна – реверс, другая – рекуперативное торможение. Регулятор оснащается двумя мостами, которые подключены встречно-параллельно.
Используемые мосты инвертируют напряжение и ток.
Рис.№3. Реверс асинхронного электродвигателя с прямым частотным преобразователем; а) скорость и составляющие вектора статорных токов АД, б) фазные напряжения электрической сети и ток нагрузки.
Реверс может осуществляться преобразователем частоты, используемым для асинхронных электрических двигателей.
Управление реверсированием выполняется с помощью векторного управления в замкнутой системе с использованием датчика обратной связи. С его помощью производится независимое управление составляющими тока Id и Iq, они служат для определения потока и вращающегося момента двигателя. Управление асинхронным двигателем аналогично проведению операций по управлению и регулированию двигателем постоянного тока.
Рис.№4. Функциональная схема регулятора скорости с векторным управлением и датчиком обратной связи.
Для осуществления функции реверса, на логическом входе регулятора предназначенного для выполнения этой команды появляется внешний сигнал. Он изменяет порядок коммутации силовых ключей инвертора и реверса двигателя. Реверс можно выполнять в нескольких вариантах.
Вариант №1: осуществление действия с помощью противовключения, при стремительном изменении очередности переключения транзисторных ключей.
При изменении чередования фаз на двигателе, находящемся в работе, происходит изменение вращения поля. В результате этого появляется большое скольжение, что создает резко-нарастающее тока ПЧ (преобразователя частоты) до самого большого значения (внутреннее ограничение тока ПЧ). При большом скольжении малый тормозной момент и внутренний регулятор ПЧ уменьшат задание скорости. При достижении электродвигателем нулевой скорости, происходит осуществление реверса, который соответствует кривой разгона. Лишняя энергия, не затраченная на трение и на нагрузку, рассеивается в роторе.
Вариант №2: изменение направления вращения электрического поля с управлением периода скорости замедления и без него.
Вращающий момент механизма прямо противоположен моменту двигателя и превышает его по модулю, то есть естественное замедление происходит быстрее во много раз, чем кривая замедления, которую установил регулятор. Значение скорости постепенно снижается и происходит смена направления вращения.
При вращающем моменте, когда естественное торможение меньше установленного регулятором, двигатель начинает работать в состоянии рекуперативного торможения и возвращает энергию преобразователю. Диодные мосты не дают энергии пройти в сеть, конденсаторы фильтра заряжаются, величина напряжения увеличивается и включается устройство безопасности, предохраняющее от выделения энергии.
Однофазные асинхронные электродвигатели
Устройство и принцип действия
Мощность такого однофазного двигателя 220В может в зависимости от конструкции находиться в пределах от 5 Вт до 10 кВт. Его ротор – это обычно короткозамкнутая обмотка («беличья клетка») – медные или алюминиевые стержни, замкнутые с торцов.
Такой однофазный двигатель, как правило, имеет две смещенные на 90° друг относительно друга обмотки. Рабочая (главная) при этом занимает большую часть пазов статора, а пусковая (вспомогательная) – оставшуюся. И однофазным его называют потому, что у него лишь одна рабочая обмотка.
Переменный ток, протекающий по главной обмотке, создает периодически меняющееся магнитное поле. Его можно считать состоящим из двух круговых с одинаковой амплитудой, вращающихся навстречу друг другу.
По закону электромагнитной индукции в замкнутых витках ротора меняющийся магнитный поток создает индукционный ток, взаимодействующий с порождающим его полем. Если ротор неподвижен, моменты действующих на него сил одинаковы, вследствие чего ротор остается неподвижным.
Если же ротор начать вращать, то равенство моментов этих сил нарушится, поскольку скольжение его витков относительно вращающихся магнитных полей станет разным. Как следствие – сила Ампера, действующая на витки ротора со стороны прямого магнитного поля, будет значительно больше, чем со стороны обратного.
Индукционный ток в витках ротора может возникать лишь при пересечении ими силовых линий магнитного поля. А для этого они должны вращаться со скоростью, чуть меньшей, чем частота вращения поля (при одной паре полюсов – 3000 об/мин). Отсюда и название, которое получили такие электродвигатели, асинхронные.
При увеличении механической нагрузки скорость вращения уменьшается, возрастает величина индукционного тока в витках ротора. Как следствие – возрастают и механическая мощность двигателя, и мощность потребляемого им переменного тока.
Схема запуска и подключения
Понятно, что раскручивать вручную ротор при каждом запуске электродвигателя неудобно. Для создания первоначального пускового момента и используется пусковая обмотка. Поскольку она составляет с рабочей обмоткой прямой угол, для создания вращающегося магнитного поля ток в ней должен быть сдвинут по фазе относительно тока в рабочей обмотке тоже на 90°.
Добиться этого можно включением в цепь ее питания фазосмещающего элемента. Резистор или дроссель обеспечить фазовый сдвиг в 90° не могут, поэтому в большинстве ситуаций логично использование конденсатора в качестве фазосмещающего элемента. В этом случае однофазный электродвигатель обладает наилучшими пусковыми свойствами.
Когда фазовращающий элемент является конденсатором, однофазные электродвигатели конструктивно могут быть такими:
- с пусковым конденсатором (рис. а);
- с пусковым и рабочим (рис. б);
- только с рабочим конденсатором (рис. в).
Первый (наиболее распространенный) вариант предусматривает подключение пусковой обмотки с конденсатором ненадолго на время пуска, после чего они отключаются. Реализовать его можно с помощью реле времени, а то и просто за счет замыкания цепи во время нажатия пусковой кнопки. Эта схема запуска характеризуется сравнительно небольшим пусковым током, но в номинальном режиме характеристики невысоки. Причина в том, что поле статора является эллиптическим (в направлении полюсов оно сильнее, чем в перпендикулярном).
Схема с рабочим, постоянно включенным конденсатором лучше работает в номинальном режиме, но имеет посредственные пусковые характеристики. Вариант с пусковым и рабочим конденсатором является промежуточным между двумя описанными выше. Расчет значений их емкостей сравнительно прост: у рабочего 0,75 мкФ на 1 кВт мощности, у пускового – в 2,5 раза больше.
Реверс трехфазных асинхронных машин
Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.
Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.
Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6. Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей. Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.
На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:
- один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
- С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
- С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.
Подробнее о схемах подключения магнитных пускателей для трехфазных электродвигателей читайте здесь.
Это интересно: Замена электросчетчика в квартире и частном доме — порядок действий
Функциональные возможности мотора
Схема устройства коллекторного двигателя прекрасно демонстрирует, как этот агрегат преобразует электричество в механическую энергию и в обратном порядке. Это говорит о том, что такое устройство может использоваться даже в качестве генератора. Когда ток проходит сквозь проводник, который расположен в магнитном поле, то на него воздействуют определённые силы. При этом активно работает правило правой руки, оказывающее непосредственное влияние на итоговую мощность двигателя. Коллекторный агрегат функционирует именно по такому принципу. В стандартной схеме чётко показано, что в магнитное поле помещена одна пара проводников, ток которых направлен в разные стороны так же, как и силы. Образуемая ими сумма даёт необходимый для оборудования крутящийся момент. В коллекторном двигателе производители добавили ещё и целый комплекс дополнительных узлов, которые гарантируют идентичное направление тока над полюсами.
Направление — вращение — реверсивный двигатель
Направление вращения реверсивного двигателя, а следовательно, и направление перемещения подвижного кварцевого клина зависит от фазы напряжения на управляющей обмотке электродвигателя, питаемой от электронного усилителя ЭУ. В свою очередь, фаза этого напряжения зависит от направления вращения плоскости поляризации исследуемым раствором. В момент равновесия системы, когда кварцевый компенсатор полностью компенсирует вращение плоскости поляризации, вызванное контролируемым раствором, электродвигатель РД останавливается. Направление вращения реверсивного двигателя зависит от знака напряжения небаланса.
Газовая схема хроматографа. / — пробоотборник, 2 — газовоздушные краны. |
Согласование направления вращения реверсивного двигателя с фазой управляющего сигнала от конденсаторного микрофона выполняется синхронным выпрямителем с поляризованным реле.
Газовая схема хроматографа. |
Согласование направления вращения реверсивного двигателя с фазой управляющего сигнала от конденсаторного микрофона выполняется синхронным выпрямителем с поляризованным реле. В цепь обмотки реле включено фотосопротивление, периодически освещаемое лампочкой накаливания через отверстие в обтюраторе.
Газовая схема хроматографа. / — пробоотборник, 2 — газовоздушные краны. |
Согласование направления вращения реверсивного двигателя с фазой управляющего сигнала от конденсаторного микрофона выполняется синхронным выпрямителем с поляризованным реле. В цепь обмотки реле включено фотосопротивление, периодически освещаемое лампой накаливания через отверстие в обтюраторе.
Принципиальная схема входной части ЭЛРУ-2 при использовании индукционных датчиков. |
Фаза напряжения разбаланса моста определяет направление вращения реверсивного двигателя.
Последний перемещает источник излучения до тех пор, пока потенциалы сравняются, что соответствует равенству тх т, Направление вращения реверсивного двигателя зависит от знака разности потенциалов между емкостями.
Последний перемещает источник излучения до тех пор, пока потенциалы сравняются, что соответствует равенству тх т2, Направление вращения реверсивного двигателя зависит от знака разности потенциалов между емкостями.
Последний перемещает источник излучения до тех пор, пока потенциалы сравняются, что соответствует равенству г1 т2, Направление вращения реверсивного двигателя зависит от знака разности потенциалов между емкостями.
Принципиальная схема автоматического рефрактометра с использованием принципа полного внутреннего отражения. |
От положения подвижного фотоэлемента ( в светлой или темной зоне) зависит фаза выходного напряжения электронного усилителя и соответственно направление вращения реверсивного двигателя. Изменение концентрации вызывает нарушение равновесия системы. Новое положение равновесия наступает, когда щель диафрагмы фотоэлемента Фг опять совпадает с границей светотени. С осью реверсивного двигателя связана стрелка вторичного прибора.