Обзор индикаторов короткого замыкания для вл 6-10-35-110кв

Причины неисправностей

Межвитковое замыкание электродвигателя не является редкой проблемой. Такая неисправность встречается в 50% всех случаев поломок. Ситуация может возникнуть из-за повышенной нагрузки на электроустановку. Неправильная эксплуатация агрегата часто влечет за собой преждевременные поломки. Номинальную нагрузку можно определить по паспорту установки. Перегрузка может быть спровоцирована механическим повреждением самого мотора. Сухие либо заклинившие подшипники часто вызывают замыкание. Не исключен факт заводского брака. Если электродвигатель хранится в ненадлежащих условиях, то это всегда чревато тем, что обмотка просто отсыреет.

Сброс индикации

После того как срабатывание произошло, есть несколько способов снять индикацию. Во-первых, вручную – при помощи штанги и магнита.

Прикасаетесь магнитом к одной из сторон корпуса и предыдущее состояние ИКЗ сбрасывается.

Этим же магнитом умные ИКЗ (рассмотрим их далее) прописываются в блоке сбора данных. Только время приложения магнита к корпусу здесь должно составлять порядка 10 секунд, пока внутри не моргнет желтый светодиод.

Заметьте, что для принудительного срабатывания вручную, магнит нужно приложить к одной стороне, а для сброса – к другой!

Второй способ сброса — автоматический, по времени. Он рассчитан на 2,4,8 или 24ч (4 часа стандарт, остальные по заказу).

Третий – при восстановлении номинального напряжения в линии или номинального тока.

В отдельных моделях после АПВ загораются желтые светодиоды.

В этом случае через минуту после успешного автоматического повторного включения прибор анализирует ток.

Если он в норме, красные светодиоды тухнут, а желтые начинают моргать в течение 4 часов. Пройдя после этого по линии вы сможете определить, где было самоустранившееся КЗ.

При устойчивом замыкании оба светодиода будут светиться до сброса.

Как предотвратить КЗ и защита от него?

Нельзя полностью исключить вероятность КЗ, поскольку на природу его возникновения влияет случайная составляющая. Поэтому в данном случае может идти речь только о профилактике, понижающей вероятность возникновения аварийной ситуации. К таким мерам относятся:

  • Контроль состояния изоляции токоведущих элементов оборудования или линий электропередач. В частности, испытание изоляции электропроводки в производственных помещениях положено проводить не реже одного раза в три года. Для бытовых сетей нормируется только срок максимальной эксплуатации. Например, для скрытой проводки, выполненной медным проводом, допустимая эксплуатация – 40 лет.
  • Сверка с проектом бытовой электросети перед сверлением теоретически должна минимизировать вероятность механического повреждения скрытой проводки. Но, как показывает практика, в таких ситуациях надежней воспользоваться прибором, для поиска проводки. Обзор таких устройств и их принципиальные схемы, можно найти на нашем сайте. Детектор проводки
  • Отключение электроприборов при выходе из дома или квартиры.
  • В «сырых» помещениях (например, в ванной комнате) необходимо минимизировать количество электрооборудования. Если таковое нельзя исключить, оно должно иметь соответствующий класс защиты.
  • В случае повреждения электроприбора, требуется исключить возможность его подсоединения к сети питания.
  • Соблюдение норм потребления электроэнергии и т.д.

Не менее важным является организация защиты, она реализуется путем установки автоматических выключателей (или предохранителей) как на ввод, так и на каждую внутреннюю линию проводки. Если произойдет короткое замыкание, электромагнитная защита автоматического выключателя сработает под воздействием высокого уровня тока КЗ. Как подобрать автоматический выключатель, в зависимости от номинального тока, Вы можете прочитать на нашем сайте.

Если в щитах РУ используются плавкие электрические предохранители, то после их «расплавления» (срабатывания), замена должна проводиться на однотипные устройства. Установка предохранителя с током меньше номинального приведет к ложным срабатываниям, превышение допустимого тока срабатывания может вызвать повреждение электрооборудования.

Умные ИКЗ без внешнего питания

Самая совершенная модель на сегодняшний день – это Smart Navigator 2.0MV (до 46кВ) и HV (до 220кВ).

Технические характеристики

Помимо тока они отслеживают и реагируют на напряжение. По ним можно однозначно сказать в какой стороне от них находится КЗ.

Но самое главное, ИКЗ нового поколения имеют встроенную связь WAN. То есть, теперь на опоре вам не придется монтировать никаких дополнительных коробочек и подводить туда питание.

Комплект состоит из 3-х штук. Один ИКЗ выступает в качестве “мастера”, два других – сателлиты.

В мастере как раз и вмонтирован GSM модуль с SIM картой. Питание устройства осуществляется от эл.магнитного поля самой ВЛ.

Однако помимо преимуществ это накладывает и определенные ограничения. Для стабильной работы прибора ток в линии должен быть не менее 5А!

Ток срабатывания Smart Navigator 2.0 выбирается исходя из двух вариантов:

фиксированные значения до 200А

4-х кратный ток нагрузки от номинального за последние 72 часа

Сброс моргающих светодиодов можно осуществлять дистанционно через IHost, Scada, или локально через USB модем и ноутбук.

https://youtube.com/watch?v=cnHm074aJyM%3F

Источники — Дни решений, Связькомплект

Проверка якоря на межвитковое замыкание

Электрические машины состоят из ротора и статора. Статор представляет собой неподвижные обмотки, уложенные в корпус. Якорь — это подвижная часть, поэтому на нее как правило попадают частички грязи и смазки и под воздействием температуры образуется окисленный налет. Он может послужить причиной неисправной работы или выхода из строя ротора электрической машины. Обнаруживается он визуальным осмотром. Нагар может стать причиной межвиткового замыкания в якоре.

Как таковой, ротор электродвигателя при нормальных условиях эксплуатации не изнашивается. Со временем подлежат замене только токосъемные щетки, если их длина уже не соответствует допустимому размеру. Однако длительные нагрузки становятся причиной нагрева обмоток статора, что в результате и способствует образованию нагара. Межвитковое замыкание якоря может случиться при механических повреждениях. Недопустимо на трущихся поверхностях наличие сколов, вмятин, царапин и трещин.

Виды индикаторов короткого замыкания

Типы индикаторов ИКЗ для ВЛ-6-10-35-110кв рассмотрим на примере ведущего производителя Horstmann (Германия).

У них очень хорошо представлена вся линейка от простейших моделей только с визуальной индикацией (подошел ножками – посмотрел), до умных экземпляров с передачей данных и записью в память самых важных параметров.

Сводная таблица по всем разновидностям представлена ниже.

Самым простым является индикатор Navigator-LM (до 46кВ).

Технические характеристики

Такое “странное” напряжение (46кВ) обусловлено необходимостью обеспечить универсальность датчиков для систем эл.снабжения в разных странах.

Датчик обладает только локальной индикацией (без возможности удаленной передачи данных). Что называется, подошел – посмотрел.

Внутри корпуса находятся светодиоды, которые при протекании через прибор тока КЗ и его сработке, начинают моргать с заданной периодичностью.

Одиночное мигание – одно КЗ. При неуспешном АПВ – двойное мигание. Светодиоды хорошо видно даже в яркий солнечный день.

Заявленная видимость – до 50м (ночью до 150м). Такое свечение можно легко увидеть даже не выходя из машины.

Сравните это с двумя еле различимыми лампочками в американских Fault Indicators.

Сброс сработавшего состояния может происходить:

вручную

через заданный промежуток времени после КЗ

при восстановлении тока нагрузки

при восстановлении напряжения (подали U на ЛЭП без подключения самих потребителей)

Для высокого напряжения 110кв есть разновидность HV (рассчитаны до 161кВ).

Корпус ИКЗ выполнен из полиамида устойчивого к ультрафиолету. Все металлические детали из нержавейки.

Механизм крепления к проводу у всех моделей очень надежный и проверяется производителем в аэродинамической трубе на скорости воздуха 200км/ч.

То есть, индикатор не сползет в середину пролета при большом уклоне и вибрации проводов.

Минимальный диаметр провода на который можно “насадить” ИКЗ начинается от 4-8мм (в зависимости от модели). То есть, на проводе АС-35 (d-8,4мм), не говоря уже про АС-50 (d-9,6мм) и выше, индикатор будет сидеть как влитой.

Класс защиты IP68. Температура эксплуатации от -40С до +85С. Ограничение температуры вызвано наличием батарейки внутри корпуса.

Сам полиамид выдерживает конечно и большие температуры, а вот батарейка нет. По поводу замены аккумулятора не переживайте, срок его службы – около 20лет.

Замена АКБ элементарная. Сбоку откручивается крышечка, достается аккумулятор и ставится новый. Состояние заряда постоянно контролируется.

Вообще световая индикация гораздо надежнее всяких ИКЗ с роторно-поворотным механизмом.

Никогда точно не знаешь, в рабочем они состоянии или что-то у них заклинило или примерзло в наших суровых зимних условиях.

Светодиоды запрятаны в прозрачную полусферу из поликарбоната, также устойчивого к УФ. С годами он не потускнеет.

Данный индикатор срабатывает по токовой характеристике. Есть три варианта настройки:

200А-100мс

200А-200мс

100А-100мс

Для каждой конкретной линии вы сами рассчитываете, заказываете и выбираете те или иные параметры.

МТЗ линии 6-35 кВ

Я уже рассматривал МТЗ, но, повторение — мать ученья. Максимальная токовая защита с выдержкой времени выступает в качестве первой ступени трехступенчатой защиты линии. Для расчета необходимо рассчитать ток срабатывания защиты, ток уставки, выдержку времени и отстроиться от соседних защит.

1) На первом этапе определяем ток срабатывания защиты с учетом токов самозапуска и других сверхтоков, которые протекают при ликвидации КЗ на предыдущем элементе:

в данной формуле мы имеем следующие составляющие:

Iс.з. — ток срабатывания защиты 2РЗ, величина, которую мы и определяем

kн — коэффициент надежности, который на самом деле можно считать скорее коэффициентом отстройки для увеличения значения уставки; для микропроцессорных равен 1,05-1,1, для электромеханических 1,1-1,4.

kсзп — коэффициент самозапуска, его смысл в том, что при КЗ происходит просадка напряжения и двигатели самозапускаются. Если нет двигателей 6(10) кВ, то коэффициент принимается 1,1-1,3. Если нагрузка есть, то производится расчет при условии самозапуска ЭД из полностью заторможенного состояния. Коэффициент самозапуска определяется, как отношение расчетного тока самозапуска к максимальному рабочему току. То есть зная ток самозапуска, можно не узнавать максимальный рабочий ток, хотя без этого знания не получится рассчитать ток самозапуска — в общем, сократить формулу не удастся особо.

kв — коэффициент возврата максимальных реле тока; для цифровых — 0,96, для механики — 0,65-0,9 (зависит от типа реле)

Iраб.макс. — максимальный рабочий ток с учетом возможных перегрузок, можно узнать у диспетчеров, если есть телефон и полномочия. Для трансформаторов до 630кВА = 1,6-1,8*Iном, для трансформаторов двухтрансформаторных подстанций 110кВ = 1,4-1,6*Iном.

2) На втором этапе определяем ток срабатывания защиты, согласуя защиты Л1 и Л2:

Iс.з.посл. — ток срабатывания защиты 2РЗ

kн.с. — коэффициент надежности согласования, величина данного коэффициента от 1,1 до 1,4. Для реле РТ-40 — 1,1, для РТВ — 1,3…1,4.

kр — коэффициент токораспределения, при одном источнике питания равен единице. Если источников несколько, то рассчитывается через схемы замещения и сопротивления элементов.

Первая сумма в скобках — это наибольшая из геометрических сумм токов срабатывания МТЗ параллельно работающих предыдущих элементов. Вторая сумма — геометрическая сумма максимальных значений рабочих токов предыдущих элементов, кроме тех, с которыми происходит согласование.

3) На третьем этапе выбираем наибольший из токов, определенных по условиям 1) и 2) и рассчитываем токовую уставку:

kсх — коэффициент схемы, данный коэффициент показывает во сколько раз ток в реле больше, чем ток I2 трансформатора тока при симметричном нормальном режиме работы; при включении на фазные токи (звезда или разомкнутая звезда) равен 1, при включении на разность фазных токов (треугольник) равен 1,73.

nт — коэффициент трансформации трансформатора тока.

4) Далее определяется коэффициент чувствительности, который должен быть больше или равен значения, прописанного в ПУЭ.

Отношение минимального тока, протекающего в реле, при наименее благоприятных условиях работы, к току срабатывания реле (уставке). Для МТЗ значение kч должно быть не менее 1,5 при кз в основной зоне защиты и не менее 1,2 при кз в зонах дальнего резервирования.

5) Определяемся с уставкой по времени

Смысл уставок по времени в следующем: если у нас КЗ как на рисунке выше, то сначала должен отключиться выключатель Л1 (находящийся ближе к КЗ), это необходимо, чтобы оставить в работе неповрежденные участки системы.

То есть tс.2рз=tс.1рз+dt, где дельта t — ступень селективности. Эта величина зависит от быстродействия защит (в частности точности работы реле времени) и времени включения-отключения выключателей.

Если предыдущая РЗ является токовой отсечкой или же РЗ выполнена на электронных (полупроводниковых) реле — dt можно принять 0,3с. Если же в РЗ используются электромеханические реле, то dt может быть 0,5…1,0. Для различных реле эта величина может доходить до нескольких секунд.

Как было написано выше, особенностью МТЗ является накапливание выдержек времени от элемента к элементу. И чем больше величина dt, тем большей будет отдаленная уставка. Для решения этой проблемы следует устанавливать цифровые РЗ (dt=0,15…0,2с) и одинаковые выключатели. Ведь, если выключатели одного типа, то и время срабатывания у всех одинаковое. А если, оно невелико, то и суммарная величина будет мала.

В общем выбор мтз состоит из трех этапов:

  • несрабатывание 2РЗ при сверхтоках послеаварийных режимов
  • согласование 2РЗ с 1РЗ
  • обеспечение чувствительности при КЗ в конце Л1(рабочая зона) и в конце Л2 (зона дальнего резервирования)

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками

Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.

Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.

Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.

Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.

При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.

Как найти межвитковое замыкание

Замыкание витков легко определить, для этого есть несколько методов

Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора

Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.

Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.

Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.

Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.

Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.

ИКЗ для ВЛ с двухсторонним питанием

Для линий с двухсторонним питанием понадобятся модели с функцией направления – Smart Navigator HV DFCI.

Технические характеристики

Они устанавливаются на ВЛ напряжением до 220кВ. При этом могут использоваться как самостоятельно в качестве локальных точек обнаружения КЗ, так и совместно со Smart Reporter.

Направление прошедшего тока КЗ фиксируется красными или зелеными светодиодами.

Каждый индикатор на корпусе имеет две стороны – А и В.

При протекании тока в направлении от А к В – загорятся красные лампочки, от В к А – зеленые.

Для обнаружения повреждения вам нужно найти два ближайших сработавших ИКЗ с разной цветовой индикацией – один красного цвета, другой зеленого.

При двухстороннем питании место короткого замыкания как раз и будет между этими точками.

Защита шин 6—10 кВ тепловых электростанций с генераторами мощностью 63—100 МВт

Защита шин 6—10 кВ тепловых электростанций с генераторами мощностью 63—100 МВт. Как указано в § 1, на современных мощных тепловых электростанциях с генераторами мощностью 63—100 МВт реакторы отходящих линий 6—10 кВ подключаются к сборным шинам без выключателей. Поэтому при применении описанной выше двухступенчатой неполной дифференциальной токовой защиты шин вторая ступень этой защиты должна обладать достаточной чувствительностью для отключения КЗ между реактором и установленным после него выключателем. Однако, как показали расчеты, вторая ступень указанной защиты не обладает требуемой чувствительностью (коэффициент чувствительности защиты ft4<l,5), так как суммарный ток нагрузки на секцию шин 6—10 кВ в режиме, когда одна из крайних секций отключена, примерно равен току КЗ за линейным реактором.
В связи с этим на указанных ТЭЦ защита шин 6—10кВ выполняется с помощью двух устройств защиты: неполной дифференциальной токовой защиты и максимальной токовой защиты с поэлементным охватом реакторов питаемых линий, предложенной инженерами В. Н. Вавиным, А. 3. Абрамович и И. 3. Флеровой. Неполная дифференциальная токовая защита предназначена для быстрого отключения повреждений на сборных шинах и в начальных витках реакторов отходящих линий.
Она выполняется в виде комбинированной токовой отсечки с пуском по напряжению, что повышает ее чувствительность. Поэлементная максимальная токовая защита предназначена для действия при повреждениях в реакторе и в peакторной сборке и используется также для резервирования Защит отходящих линий 6—10 кВ.
Она выполняется в виде отдельных комплектов, включаемых на трансформаторы тока, установленные со стороны шин 6—10 кВ до реакторов отходящих линий. Эта защита дополняется устройством, предотвращающим ее ложное срабатывание при проверках защиты на отключенной линии, в качестве которого применяется устройство типа КРБ-126 (на некоторых станциях применено ныне снятое с производства устройство типа КРБ-122). В схеме защиты шин предусмотрена установка максимальной токовой защиты на секционном реакторе, которая нормально выведена из действия и вводится в работу в режиме опробования шин включением секционного реактора, а также в некоторых других режимах.
Все вышеуказанные защиты имеют двухфазное двухрелейное исполнение с установкой трансформаторов тока на фазах А и С. Приведенные далее схемы защит шин выполнены для электрических станций с одним генератором на секцию. Но так как на напряжении 10 кВ могут параллельно работать два генератора мощностью по 63 МВт на секцию, в выходных реле защиты предусмотрен резервный контакт для отключения и второго генератора. Неполная дифференциальная токовая защита действует на отключение всех питающих элементов, в том числе генератора, что обеспечивает полное обесточение шин и уменьшение развития повреждений на шинах.
Максимальная токовая защита с поэлементным охватом питаемых линий выполнена с действием на отключение с выдержкой времени всех питающих элементов, в том числе генератора. При этом обеспечивается надежное резервирование отключения КЗ за реакторами питаемых линий в случае отказа из-за большого остаточного напряжения максимальной токовой защиты с пуском по напряжению, установленной на генераторе, при трехфазном КЗ за реактором линии.

Индикаторы короткого замыкания «Астрон» в распределительных линиях 6‑10 кВ — Энергетика и промышленность России — № 07 (195) апрель 2012 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 07 (195) апрель 2012 года

К тому же в большинстве случаев короткие замыкания бывают не единичными и происходят во время природных аномалий, таких, как проливной дождь, снегопад. В этих случаях множество участков ВЛЭП одновременно находятся в режиме короткого замыкания на землю или межфазного, в зависимости от того, изолирована нейтраль или нет. Оперативное обнаружение аварийных участков в таких случаях является крайне насущной задачей.

Сотрудники ОКБ «Астрон» в 2008 году разработали индикаторы короткого замыкания. Принцип их действия основан на контроле протекающих в линии токов. При превышении заданного уровня тока по причине короткого замыкания индикатор переворачивает красный флажок или мигает светодиодом. Внутренняя батарея, которая при нормальной работе подзаряжается от индукции самой линии, при отсутствии тока в линии, отключенной автоматикой, позволяет светодиоду мигать до 24 часов. Это дает монтажной бригаде возможность быстро обнаружить ветку, по которой шел ток короткого замыкания, оперативно отключить аварийный участок разъединителем и включить оставшуюся часть ВЛЭП без участка с коротким замыканием под напряжение. В случае поворота флажка на индикаторе участок с коротким замыканием будет выявлен по красному флажку. При подаче нормального напряжения индикатор вернется в нормальное положение без красного флажка.

Индикаторы устанавливаются на ответвлениях ВЛЭП 6‑10 кВ для определения проблемного участка, как показано на рисунке.

Установка индикаторов «Астрон» может производится как на новых линиях во время монтажа, так и на действующих линиях. Установка производится без отключения линии от нагрузки с земли с помощью изолированной штанги. Индикаторы имеют специальное крепление для фиксации на проводе ВЛЭП. Снятие производится также с применением изолированной штанги и приспособления без поднятия на опору и без отключения линии от нагрузки.

Внутренняя батарея позволяет гарантированно работать без замены на протяжении десяти лет, по истечении этого срока производится замена батарей. На индикаторах без светодиодов с флажками внутренние батареи отсутствуют, возврат в нормальное состояние производится при включении линии с нормальной нагрузкой.

Для построения большой распределенной системы регистрации коротких замыканий разработаны индикаторы с передачей данных по GPRS протоколу по сетям сотовой GSM-связи. Система в центральной диспетчерской автоматически с указанием на карте укажет места короткого замыкания.

Масштабируемость системы предусмотрена до 150  000 индикаторов с передачей данных в любую географическую точку.

Новейшая разработка включает в индикаторы датчик GPS/ГЛОНАСС для точного определения местоположения сработавшего индикатора. Координаты индикатора определяются с точностью до 2 метров с отображением в диспетчерской на картах Google, Яндекс или других ГИС. Передача данных в диспетчерскую производится также по GPRS.

Индикаторы типа «Астрон» эксплуатируются более трех лет в нескольких энергосистемах и зарекомендовали себя как простые и надежные помощники энергетиков в трудные минуты стихийных бедствий.

С полным каталогом вы можете ознакомиться на сайте ОКБ «Астрон»:

Характеристики

Разрядные характеристики РДИП-10 обеспечивают то, что ни один из изоляторов всех трех фаз в данной схеме не перекрывается, поскольку каждый из них защищен разрядником, установленным электрически параллельно ему и расположенным либо непосредственно рядом с изолятором, либо на соседней опоре.

При уровнях индуктированных перенапряжений, близких к импульсному напряжению срабатывания разрядника, возможно перекрытие разрядника лишь на одной опоре, приводящее к однофазному замыканию на землю. Ток замыкания при этом не превышает 10-20 А, и петлевой разрядник с общей длиной перекрытия 80 см гарантированно исключает возникновение силовой дуги.

 Основные технические характеристики

Класс напряжения 10 кВ
Длина перекрытия по поверхности 78 см
Внешний искровой промежуток 2-4 см

Импульсное 50 %-ное разрядное напряжение, не более

на положительной полярности

на отрицательной полярности

110 кВ

90 кВ

Напряжение координации с изолятором ШФ10-Г * 300 кВ
Многократно выдерживаемое внутренней изоляцией импульсное напряжение, не менее

50 импульсов

300 кВ

Выдерживаемое напряжение промышленной частоты, не менее 

в сухом состоянии 

под дождём

42 кВ

28 кВ

Многократно выдерживаемый импульсный ток 8/20 мкс, не менее

20 импульсов

40 кА

Масса 2,3 кг
Срок службы, не менее 30 лет

Установка

Разрядник предназначен для защиты ВЛ 6, 10 кВ от индуктированных грозовых перенапряжений, которые составляют подавляющую долю от общего числа грозовых перенапряжений, способных приводить к перекрытиям изоляции.

Известно, что величина индуктированных перенапряжений не превосходит значения 300 кВ, и это позволяет при правильной организации молниезащиты исключить возможность одновременного перекрытия двух или трех фаз на одной опоре и, соответственно, междуфазных коротких замыканий. Для этого необходимо устанавливать по одному разряднику на опору с чередованием фаз, например, на первой опоре разрядник устанавливается на фазу А, на второй – на фазу В, на третьей – на фазу С и т. д.

При такой системе установки индуктированное на линии грозовое перенапряжение приводит к перекрытию разрядников на разных фазах соседних опор и образованию контура междуфазного замыкания сопровождающего тока напряжения промышленной частоты, в который включены сработавшие разрядники и сопротивления заземления опор, ограничивающие этот ток на уровне нескольких сотен ампер, способствуя его гашению и предотвращению отключения ВЛ.

РДИП1-10-IV-УХЛ1

РАЗРЯДНИК ДЛИННО-ИСКРОВОЙ ПЕТЛЕВОЙ МОДИФИЦИРОВАННЫЙ РДИП1-10-IV-УХЛ1

РДИП1-10 по характеристикам, принципу действия и назначению не отличается от разрядника РДИП-10-IV-УХЛ1, являясь лишь его конструктивной модификацией.

Конструктивное отличие РДИП1 от РДИП сводится к измененным форме изгиба петли, деталям узла крепления и способу обеспечения воздушного зазора между разрядником и проводом. Воздушный разрядный промежуток между электродом РДИП1 и проводом сохраняет установленные параметры независимо от геометрии провода в пролете и даже при проскальзывании провода в обвязке на изоляторе.

Название Значение
Класс напряжения, кВ

6-10

Проводник

ВЛЗ (СИП)

Тип перенапряжения

Индуктированное

Габариты упаковки, см

71,5/55,0/43,0

Ед.изм.

шт

Количество в упаковке, шт.

10

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Раздольная энергия
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: