Измерение — переходное сопротивление
Измерение переходных сопротивлений является вспомогательным и необходимо для контроля состояния контактов при испытаниях на устойчивость к токам короткого замыкания и на механическую износоустойчивость.
Измерение переходных сопротивлений контактных соединений производится микроомметрами или контактомерами, т.е. специальными приборами для измерения малых сопротивлений. Эти приборы имеют специальные контактные наконечники щупов, которые прижимаются к токопроводящим элементам с обеих сторон проверяемого контактного соединения. Со стороны проверяемого сопротивления присоединяются потенциальные наконечники, с внешней стороны — токовые наконечники щупов. Обозначения потенциальных ( П) и токовых ( Т) наконечников нанесены на рукоятки щупов. Оценка качества контактного соединения производится сопоставлением значения сопротивления участка с контактным соединением со значением сопротивления токоведущего элемента на участке, длина которого равна участку с проверяемым контактным соединением.
Измерение переходного сопротивления рельсового пути производится прибором МС-08. Перед началом измерений исследуемый участок рельсового пути электрически изолируют от остальной трассы путем снятия средних шинок путевых дросселей.
Измерение переходного сопротивления рельсового пути выполняется прибором МС-08. Перед началом измерений исследуемый участок пути электрически изолируется от остальной трассы путем снятия средних шинок путевых дросселей. В качестве заземляющего электрода могут быть использованы: в туннеле с чугунной отделкой — любая конструкция, имеющая металлическую связь с тюбингом; в туннеле с железобетонной отделкой — металлическая шина, соединяющая кабельные кронштейны.
Измерение переходных сопротивлений контактов переключающих устройств производится при постоянном токе одним из следующих методов ( см. ГОСТ 8008 — 63, пп.
Внешний вид моста Р316. |
Измерение переходных сопротивлений паек якорных обмоток машин постоянного тока и аналогичные ему измерения удобно производить с помощью микроомметров.
Измерением переходного сопротивления контактов выключателя проверяют его надежность, так как повышенное переходное сопротивление может привести к перегреву контактов, их оплавлению и выходу выключателя из строя. Величина переходных сопротивлений контактов выключателей зависит от типа выключателя.
Измерением переходного сопротивления контактов выключателя проверяют его надежность, так как повышенное переходное сопротивление может привести к перегреву контактов, их оплавлению и выходу выключателя из строя.
Производится измерение переходного сопротивления контактов каждой фазы. Если при текущем ремонте сопротивление контактов превышает норму и возросло против значения, измеренного при капитальном ремонте, более чем в два раза, контакты должны быть улучшены.
Для измерения переходного сопротивления контактов может быть использован определенный искробезопасный омметр М-372 И. На рис. 58 показан омметр, переделка которого осуществлена Северодонецкнм химическим комбинатом по рекомендации института Гппронисэлектрошахт на базе серийно выпускаемого омметра М-372. Он состоит из собственного прибора, в корпусе которого расположен источник питания ( аккумулятор МЦ-4к), и соединительных проводов с зажимами на конце.
Схема измерения сопротивления контактов выключателя ( метод падения напря -, жения. |
При измерении переходного сопротивления с помощью моста ( рис. 126) величина переходного сопротивления определяется непосредственным отсчетом по шкале моста.
Согласно Нормам измерение переходного сопротивления контактов сборных и соединительных шин может производиться лишь в установках с номинальным током 1 000 а и больше и выборочно у 5 — 10 % контактов.
Пример определения коэффициента р по результатам измерения переходного сопротивления на действующем трубопроводе. |
Фиксирование результатов
По завершении замеров переходных характеристик всей заземляющей системы заказчику работ должен быть вручён протокол измерения и проверки металлосвязи, оформленный по установленному образцу.
В этом документе обязательно должна быть отражена следующая информация:
- название и геофизические данные исследуемого электротехнического устройства или установки;
- число входящих в неё контактов, прошедших проверку;
- значение максимального сопротивления всей измеряемой цепочки.
При наличии каких-либо отклонений в параметрах и состоянии элементов обследуемого оборудования (отсутствие нормального заземления или несоответствие его параметров общепринятым правилам) обнаруженные нарушения также фиксируются в протоколе измерений металлосвязи.
Стоит отметить, что металлосвязь является важнейшим показателем безопасности эксплуатации действующих электроустановок.
В случае если её параметры не соответствует требованиям нормативов, следует принять меры по устранению этого недостатка (организовать протяжку болтовых соединений, разборку и чистку контактов и так далее).
Но если эти действия не приводят к желаемому результату – следует обновить всю рабочую цепочку защитного заземления.
Как часто замерять ПС заземления
Заземление – это специальное соединение оборудования с заземляющим устройством (ЗУ).
ЗУ представляет собой устройство, состоящее из следующих элементов:
- заземлителя (контура заземления);
- шины заземления;
- заземляющих проводников.
Проверку в полном объёме с вскрытием грунта, осмотром состояния заземлителей и соединяющих их проводников проводят 1 раз в 12 лет. Внеплановые проверки проводят после капитальных ремонтов, связанных с заземляющими элементами. Срок проверки и измерений ПС ЗУ назначается на основании рекомендаций организации, которая выполняла предыдущую проверку.
Значение Rп, лежащее в пределах регламентируемых норм, обеспечивает стабильную работу коммутационных устройств. Это, в свою очередь, способствует бесперебойной и безопасной эксплуатации оборудования.
Чем измеряют заземление
Для измерения этой величины применяется омметр — прибор, который изменяет сопротивление. При этом устройств для определения сопротивления заземления должны иметь определенные характеристики. Самая главная: очень низкая проводимость на входе. Диапазон измерений у таких приборов крайне небольшой: обычно он составляет от 1 до 1000 Ом. Точность измерения в аналоговых приборах не превышает 0.5–1 Ом, а в цифровых — до 0.1 Ома.
Несмотря на повальное распространение китайских и европейских приборов, самым популярным остается М416, разработанный еще в СССР. Устройство имеет четыре диапазона измерения: от 0 до 10 Ом, от 0.5 до 50, от 2 до 200 и от 100 до 1000. Работает прибор от трех «пальчиковых» батареек. Несмотря на это, мобильным его назвать трудно — размеры корпуса не слишком комфортны.
Более продвинутой версией является Ф4103 — промышленный омметр с большим входным сопротивлением. Он еще менее транспортабельный, но имеет большее количество диапазонов измерения. Большой плюс такого прибора: работа с огромным диапазоном сигналов (от постоянного и пульсирующего тока — до переменного с частотой 300 Гц). Также порадует пользователя и диапазон рабочих температур: от –25 до 55 градусов по Цельсию.
Порядок проведения испытаний и измерений.
Сопротивление изоляции.
В процессе эксплуатации измерения проводятся: на вакуумных выключателях 6-10кВ –проверка изоляции вторичных цепей и может проводится совместно с проверкой устройств релейной защиты.
Значения сопротивления изоляции вакуумных выключателей
Класс напряжения (кВ) | Допустимые сопротивления изоляции (МОм) не менее | |
Основная изоляция | Вторичные цепи и электромагниты управления | |
3-10 | 300 | 1(1) |
15-150 | 1000 | 1(1) |
220 | 3000 | 1(1) |
Испытание изоляции повышенным напряжением промышленной частоты.
Испытание изоляции повышенным напряжением проводится после первых двух лет экс-плуатации выключателей и в дальнейшем через пять лет эксплуатации.
Значения испытательного напряжения промышленной частоты.
Класс напря жения (кВ) | Испытательное напряжение (кВ) для вакуумных выключателей | ||
На заводе – изготовителе | Перед вводом в эксплуатацию и в эксплуатации | ||
Фарфоровая изоляция | Другие виды изоляции | ||
До 0,69 | 2,0 | 1 | 1 |
3 | 24,0 | 24,0 | 21,6 |
6 | 32,0 | 32,0 | 28,8 |
10 | 42,0 | 42,0 | 37,8 |
15 | 55,0 | 55,0 | 49,5 |
20 | 65,0 | 65,0 | 58,5 |
35 | 95,0 | 95,0 | 85,5 |
Значение испытательного напряжения для вторичных цепей и электромагнитов управления должно составлять 1кВ, при условии, что данные устройства рассчитаны на напряжение не ниже 60В. При испытании выключателя «на разрыв» испытательное напряжение равно напряжению для испытания основной изоляции.
Электромагниты управления должны срабатывать при напряжении:
- включения – 0,85Uном.
- отключения – 0,7Uном.
Проверка выключателей многократным включением и отключением
Данное испытание проводится при номинальном напряжение на выводах электромагнитов управления. Число циклов включения-отключения для вакуумных выключателей равно 5.
Проверка состояния контактов выключателей.
Состояние контактов определяют путём измерения сопротивления постоянному току полюсов выключателей, которое должно быть не более нормируемого в технической документации на соответствующее оборудование. Ориентировочные данные сопротивлений полюсов выключателей в зависимости от номинального тока выключателей в таблице
Номинальный ток выключателя (А) | Сопротивление полюса (мкОм) |
630А | 50 |
1000А | 40 |
Измерение производится как можно ближе к контактам самого выключателя. Данное условие позволяет оценить состояние именно контактов выключателя, исключая при измерении контактные соединения например, розеточных групп выкатного элемента, или контактные со-единения измерительных трансформаторов тока и ошиновки распределительных устройств.
Проверка временных характеристик выключателей.
Проверка временных характеристик вакуумных выключателей производится при номинальном напряжении оперативного тока. Временные параметры включения и отключения выключателей должны соответствовать паспортным данным на конкретный тип выключателей. Ориентировочно время включения вакуумного выключателя колеблется в пределах 0,05 – 0,08 секунд, время отключения – в пределах 0,05 – 0,07 секунд.
Проверка характеристик контактов выкатного элемента и ячейки.
Данный вид проверки производится для определения состояния контактных соединений в ячейке КРУ . Этот вид проверки позволяет удостоверится в надёжности и качестве контактного соединения между выкатным элементом и неподвижными контактами ячейки КРУ. Примене-ние данного вида замеров целесообразно наряду с определением соосности контактов и глуби-ны их соприкосновения.
Болтовые контактные соединения.
Контактные соединения, выполненные с помощью болтов, чаще всего имеют дефекты из-за отсутствия шайб в месте соединения медной жилы с плоским выводом из меди или сплава алюминия, отсутствия тарельчатых пружин, непосредственного подсоединения алюминиевого наконечника к медным выводам оборудования в помещениях с агрессивной или влажной средой, в результате недостаточной затяжки болтов и др.
Болтовые контактные соединения алюминиевых шин на большие токи (3000 А и выше) недостаточно стабильны в эксплуатации. Если контактные соединения на ток до 1500 А требуют подтяжки болтов 1 раз в 1 — 2 года, то аналогичные соединения на токи 3000 А и выше нуждаются в ежегодной переборке с непременной зачисткой контактных поверхностей. Необходимость в такой операции связана с тем, что в многоамперных шинопроводах (сборные шины электростанций и т.п.), выполненных из алюминия, более интенсивно протекает процесс образования оксидных пленок на поверхности контактных соединений. Процессу образования оксидных пленок на поверхности болтовых контактных соединений способствуют различные температурные коэффициенты линейного расширения стальных болтов и алюминиевой шины. Поэтому при прохождении по шинопроводу тока КЗ, при работе его с переменной токовой нагрузкой в нем при большой протяженности в результате вибрационных воздействий происходит деформация (уплотнение) контактной поверхности алюминиевой шины. В этом случае усилие, стягивающее две контактные поверхности ошиновки, ослабевает, имевшийся между ними слой смазки испаряется и т.д.
Из-за образования оксидных пленок площадь соприкосновения контактов, т.е. число и размер контактных площадок (число точек), через которые проходит ток, уменьшаются и, вместе с тем, увеличивается плотность тока, которая может достигать тысяч ампер на квадратный сантиметр, вследствие чего сильно растет нагрев этих точек. Температура последней точки достигает температуры плавления материала контакта, и между контактными поверхностями образуется капля жидкого металла. Температура капли, повышаясь, доходит до кипения, пространство вокруг контактного соединения ионизируется, и появляется опасность многофазного замыкания в РУ. Под действием магнитных сил дуга может перемещаться вдоль шин РУ со всеми вытекающими отсюда последствиями.
Опыт эксплуатации показывает, что наряду с многоамперными шинопроводами недостаточной надежностью обладают и одноболтовые контактные соединения. Последние, в соответствии с ГОСТ 21242-75, допускаются к применению на номинальный ток до 1 ООО А, однако повреждаются уже при токах 400 — 630 А. Повышение надежности одноболтовых контактных соединений требует принятия ряда технических мер по стабилизации их электрического сопротивления. Процесс развития дефекта в болтовом контактном соединении, как правило, протекает достаточно длительно и зависит от ряда факторов: тока нагрузки, режима работы (стабильная нагрузка или переменная), воздействия химических реагентов, ветровых нагрузок, усилий затяжки болтов, стабилизации давления контактов и др.
Переходное сопротивление болтового контактного соединения зависит от продолжительности токовой нагрузки. Переходное сопротивление контактных соединений постепенно повышается до определенного момента, после чего происходит резкое ухудшение контактной поверхности контактного соединения с интенсивным тепловыделением, свидетельствующим об аварийном состоянии контактного соединения. Аналогичные результаты были получены специалистами фирмы “Инфраметрикс” (США) при тепловых испытаниях болтовых контактных соединений. Повышение температуры нагрева в процессе испытаний носило постепенный характер в течение года, а затем наступал период резкого повышения тепловыделения.
Как правильно измерять переходное сопротивление
Есть определенные правила, описывающие правильное измерение Rn для устройств коммутации. К ним относятся автоматические выключатели, всевозможные разъединители и шины.
Методов измерений насчитывается несколько:
- метод, когда отсчет производится прямо и непосредственно;
- с использованием мультиметра (можно также пользоваться амперметром или вольтметром);
- способ измерения нестабильного статического поведения сопротивления перехода.
Обратите внимание! Первый пункт предполагает использование приборов для непосредственного расчета с погрешностью менее 10 %. Чаще им пользуются для измерения Rn контактного соединения. Перед замером контакты не очищают
Их соединяют с выводами приборов. При этом перемещать приборы и размыкать контакты противопоказано
Перед замером контакты не очищают. Их соединяют с выводами приборов. При этом перемещать приборы и размыкать контакты противопоказано.
Формула для нестабильного статического СП
При втором способе определяется величина падения напряжения при фиксированном значении тока на переходе, который тестируется. Погрешность любого прибора в измерительной системе подобного рода не более 3 %. Изначально значение сопротивления подбирается в несколько раз больше, чем предполагаемое. Расчет выполняется по формуле: Rп = UPV2/IPA, где UPV2 — цифра, которую показал вольтметр PV2 в В; IPA — ток, измеренный амперметром PA в Ам.
Статическая нестабильность сопротивления перехода определяется исходя из среднеквадратичного изменения Rn, определяемого в ходе многократного измерения. Погрешность таких замеров +/- 10 %.
Список приборов для измерения СП
Факторы, влияющие на величину переходного сопротивления
Удельное сопротивление
Прежде, чем говорить о факторах, нужно знать, что собой представляют контакты. Они различаются по виду контактируемой поверхности:
- точечные – соединение происходит в точке;
- линейные – соприкасаются по линии;
- плоскостные – контакт по плоскости.
Примеры точечных соединений – «сфера – сфера»; «вершина конуса – плоскость», «сфера – плоскость» и др. К линейным относятся соприкосновения: «тор – плоскость», «цилиндр – плоскость», «цилиндр – цилиндр» и т.п.
Площадь прикосновения контактов можно подсчитать по формуле:
Sпр = F/σ,
где:
- F – сила сжатия контактов;
- σ – временное сопротивление материала контактов сжатию.
Существуют разные способы соединения:
- механические (скрутки, болтовые зажимы, опрессовка);
- сварка;
- пайка.
Величина переходного сопротивления определяется по формуле:
Rп = knx/(0,102*Fk)n,
где:
- knx – коэффициент, обуславливаемый материалом, формой контакта, состоянием поверхности;
- Fk – сила, с которой сжимаются контакты;
- n – показатель степени, показывающий число точек соприкосновения.
Показатель степени для разных видов контактов:
- для точечного – n = 0,5;
- для линейного – n = 0,5-0,7;
- для плоскостного (поверхностного) – n = 0,7-1.
Существуют принятые по гост ГОСТ 24606.3-82 нормы переходного сопротивления контактов.
Факторы, влияющие на Rп
Внимание! С окислением поверхностей металлов в местах соединений можно бороться при помощи протирания контактов спиртосодержащими растворами. Допустимо смазывать болтовые соединения солидолом, это поможет снижать доступ кислорода и замедлять процесс окисления. Регулярная протяжка контактов и скруток, недопустимость соединений меди и алюминия, полировка губок контакторов – всё это меры борьбы с переходным сопротивлением
Регулярная протяжка контактов и скруток, недопустимость соединений меди и алюминия, полировка губок контакторов – всё это меры борьбы с переходным сопротивлением.
К сведению. Плохое прижатие контактируемых поверхностей вызывает не только повышение сопротивления, но и увеличение степени нагрева проводников.
Результат нагрева места соединения
Влияние встроенного трансформатора тока (ТТ) на измерение Rпер баковых выключателей
При подаче измерительного тока через полюс бакового выключателя во вторичной обмотке ТТ возникает переходный процесс, который проявляется в индуцировании в первичную цепь импульса напряжения, постепенно спадающего до нуля. Это изменяющееся напряжение суммируется падением напряжения на Rпер., созданного измерительным током, и воспринимается микроомметром как дополнительное (внесение из вторичной обмотки ТТ) сопротивление, включенное последовательно Rпер. и изменяющееся во времени. Время затухания переходного процесса спада внесенного сопротивления зависит от многих факторов и может меняться от 1,0 до 60 с. Переходный процесс, в цепи содержащей ТТ, возникает не только при включении тока, но и при его выключении.
От чего зависит величина переходного электрического сопротивления
Величина переходного сопротивления контактов зависит от материала, из которого они изготовлены, геометрической формы и размеров, степени обработки поверхностей контактов, силы нажатия контактов и степени окисления. Особенно интенсивное окисление происходит во влажной среде и с химически активными веществами, а также при нагреве контактов выше 70 — 75 С.
Величина переходного контактного сопротивления не должна превышать более чем на 20% величину сопротивления сплошного участка этой цепи примерно такой же длины.
Величина переходного электрического сопротивления контакта зависит от степени окисления соединяемых контактных поверхностей проводников. Металл контактов взаимодействует с окружающей средой, кислородом воздуха, агрессивными тазами и влагой и вступает с ними в химические реакции, вызывая химическую коррозию металла. Пленка окиси, образующаяся на поверхности металла (например, алюминия) от воздействия воздуха и окружающей среды, создается чрезвычайно быстро и обладает очень большим электрическим сопротивлением. Загрязненные или покрытые окислами контактные поверхности имеют более высокое переходное сопротивление, так как в этом случае в ряде точек нет непосредственного соприкосновения металлов. Окисление идет тем быстрее, чем выше температура контактных поверхностей и чем легче доступ воздуха к ним. Переходное сопротивление контактного соединения или контакта вследствие окисления может возрасти в десятки и сотни раз, так как окислы большинства металлов являются плохими проводниками. В результате реакции окисления проводящая конструкция постепенно разрушается. Если при этом она находится под нагрузкой, то уменьшение ее сечения приводит к дополнительному нагреву (закон Джоуля-Ленца), что в итоге может привести к ее расплавлению.
Величина переходного сопротивления контакта зависит от его конструкции, материала соприкасающихся частей и силы прижатия их друг к другу. Контактные поверхности всегда имеют микроскопические возвышения и впадины; поэтому соприкосновение происходит только в отдельных точках-небольших площадках. Действительная площадь касания увеличивается с ростом силы прижатия контактов друг к другу. Под влиянием силы прижатия металл в точках касания сминается и размеры площадок увеличиваются, возникает соприкосновение в новых точках. Это приводит к снижению переходного сопротивления.
Проверка расстояния. Величина переходного сопротивления контактов выключателей (на одну фазу) для масляных выключателей 200 а составляет не более 350 мком и для выключателей 1000 а-100 мком. Для всей цепи одной фазы воздушных выключателей сопротивление контактов должно быть не более 500 мком.
Величина переходных сопротивлений контактов выключателей зависит от их типа.
На величину переходного сопротивления контакта, как показывают опытные данные, оказывает влияние ряд причин. Оно зависит от материала контактного соединения, давления, испытываемого контактными элементами, величины поверхности их соприкосновения и ее состояния, а также температуры контакта.
Сопротивление зависит от материала контактного соединения, давления, испытываемого контактами, величины поверхности соприкосновения, состояния поверхности и температуры контакта.
Большое влияние на большие переходные сопротивления контактов оказывает их окисление. Контакты, помещенные в масло, подвергаются значительно меньшему окислению, чем работающие в воздухе.
Конструкция контактов должна быть такова, чтобы замыкание и размыкание контактов сопровождалось трением одной поверхности о другую, что способствует их очищению от оксидной пленки.
Когда не так важна величина переходного сопротивления контакта, как его постоянство (например, в измерительной аппаратуре), применяют гальваническое осаждение палладия, имеющего электропроводность в семь раз меньшую, чем у серебра, но весьма стойкого к химической коррозии и твердого.
При очень больших силах нажатия величина переходного сопротивления контактов меняется чрезвычайно не-значительно. Кроме того, слишком большие силы нажатия вызывают чрезмерные напряжения в материале контактных элементов, вследствие чего контакты утрачивают упругость и становятся менее прочными.
По виду касания различают размыкаемые контакты точечные, линейные и плоскостные. Поверхности контактов из-за шероховатости соприкасаются в ограниченном числе точек. Величина переходного сопротивления контакта зависит от силы сжатия контактов, пластичности их материала, качества обработки поверхности и ее состояния, а также от удельного сопротивления материала и вида касания.
Остались вопросы?Проконсультируем по телефону
Зачем измерять переходное сопротивление (ПС)
Электрические установки (ЭУ), а также корпуса электродвигателей, генераторов, трансформаторов и других преобразователей необходимо заземлять. Присоединение заземляющего устройства к оборудованию и ЭУ выполняется болтовым соединением, которое так же имеет ПС.
Для надёжности срабатывания защитного отключения при коротком замыкании переменного тока на корпус ПС периодически должно проверяться.
Результаты тестирования ПС дают возможность понять, какова вероятность поражения человека током, есть ли опасность возгорания оборудования при повышении температуры на плохих контактах. Высокое ПС увеличивает время срабатывания защитного оборудования.
Чем вызван рост переходного сопротивления?
Под переходными контактами подразумеваются соприкасающиеся металлические элементы. Добиться их идеальной полировки невозможно, все равно на поверхности будут присутствовать бугорки и вмятины микроскопического размера. Площадь контактируемых поверхностей изменяется от воздействия различных внешних факторов (температура, сила прижатия, загрязнение поверхности и т.д.), что ведет к увеличению переходного сопротивления. На представленных ниже фотографиях медного контакта, сделанных при помощи электронного микроскопа, видно образование на поверхности пленки из оксида меди.
Поверхность медного контакта, увеличенная микроскопом
Такая оксидная пленка обладает диэлектрическими свойствами, они хоть и не велики, но этого может оказаться достаточно, чтобы нарушить металлосвязь. В результате соединение будет нагреваться и рано или поздно приведет к отгоранию контакта, что незамедлительно отразится на качестве металлосвязи. Не менее распространенная причина – человеческий фактор, именно поэтому после монтажных работ требуется проводить измерение металлосвязи.
Наши преимущества
Лицензия РосТехНадзора №5742
Лицензируемая организация ООО Инженерный центр ”ПрофЭнергия” гарантирует точность, объективность и достоверность результатов.
Поверенные приборы и оборудование (СП №0889514)
Проверенные приборы и оборудование (СП №0889514): В нашей кампании используется только качественные приборы и оборудование.
Бесплатный выезд на объект и расчет сметы
Бесплатный выезд на объект и расчет сметы: Наши специалисты бесплатно приедут на объект и рассчитают стоимость.
На 25% выгоднее конкурентов
На 25% выгоднее конкурентов: У нас честные цены. А так же действуют индивидуальные скидки.
Кандидаты технических наук в штате
Кандидаты технических наук в штате: «ПрофЭнергия» имеет очень отлаженный коллектив квалифицированных инженеров с допусками ко всем видам проводимых работ.
Причины возникновения явления
Общее сопротивление
Контактное соединение коммутирует между собой участки электроцепи. Там, где происходит соединение, получается токопроводящее взаимное прикосновение, через которое ток из одного участка цепи переходит в другой. Обычное наложение поверхностей не выполняет качественного соединения. Это связано с тем, что реальные поверхности – это неровности, имеющие выступы и углубления. При достаточном увеличении изображения можно это наблюдать даже на отшлифованных плоскостях.
Пятно контакта под микроскопом
Внимание! На практике получается, что площадь реального прикосновения гораздо меньше всей площади контакта. Ещё одной причиной возникновения такого сопротивления являются пленки окисления металла, присутствующие на поверхностях. Они препятствуют движению электричества и стягивают линии тока к точкам касания
Избавиться от этого сопротивления полностью невозможно. Его величина всегда больше, чем удельные сопротивления металлов, из которых выполнены проводники
Они препятствуют движению электричества и стягивают линии тока к точкам касания. Избавиться от этого сопротивления полностью невозможно. Его величина всегда больше, чем удельные сопротивления металлов, из которых выполнены проводники
Ещё одной причиной возникновения такого сопротивления являются пленки окисления металла, присутствующие на поверхностях. Они препятствуют движению электричества и стягивают линии тока к точкам касания. Избавиться от этого сопротивления полностью невозможно. Его величина всегда больше, чем удельные сопротивления металлов, из которых выполнены проводники.
Микроструктура электрического контакта
Квантовый предел
Когда проводник имеет пространственные размеры, близкие к , где находится волновой вектор Ферми проводящего материала, закон Ома больше не выполняется. Эти небольшие устройства называются квантовыми точечными контактами . Их проводимость должна быть целым числом, кратным значению , где — элементарный заряд, а — постоянная Планка . Квантовые точечные контакты ведут себя больше как волноводы, чем классические провода повседневной жизни и могут быть описаны формализмом рассеяния Ландауэра . Точечно-контактное туннелирование — важный метод определения характеристик сверхпроводников .
2πkF{\ displaystyle 2 \ pi / k _ {\ text {F}}}kF{\ displaystyle k _ {\ text {F}}}2е2час{\ displaystyle 2e ^ {2} / h}е{\ displaystyle e}час{\ displaystyle h}