Защита минимального напряжения принцип работы

Принцип работы ЗМН

Защита от минимального напряжения (ЗМН) имеет идентичный принцип работы во всех сферах защиты по напряжению. Для понимания, функциональность ЗМН можно объяснить на примере электрических двигателей.

Механизмы останавливаются при возникновении КЗ (короткое замыкание). После его ликвидации происходит самозапуск двигателей, подключенных к секциям или шинам. У каждой группы свое входное питание от трансформатора, либо иного источника. Пусковые токи в несколько раз превышают номинальные значения, во время запуска происходит «просадка» напряжения на секциях.

Защита ЗМН отключает незначительных потребителей участка сети — это электродвигатели не влияющие на процесс, их простой не вызовет сбой в производстве. Следовательно, уменьшается суммарный пусковой ток, напряжение в сети не имеет критичной просадки, его хватает на самозапуск главных двигателей или узлов.

Секционный (групповой) самозапуск электрических двигателей начинается после возобновления подачи питания.

Это интересно: Указатели напряжения — виды, назначение, правила пользования

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.

Подключение

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.

Терморезисторы, встраиваемые в обмотки

Второй тип внутренней защиты — это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.

В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.

Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх — по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, — происходит обесточивание контрольного реле.

Требования к монтажу УЗИП

А теперь, когда определено, какие УЗИПы и где применять, можно рассмотреть некоторые особенности их использования. Устройства для защиты по питанию могут иметь три типа подключения:

— Т-образный (параллельный), когда УЗИП подключается параллельно питающей цепи. Рабочий ток при этом через устройство защиты не идёт, т.е. вы можете его использовать при любой мощности системы электроснабжения. Сечение соединительных проводников должно выбираться в соответствии с рекомендациями производителя УЗИП.

— последовательный, когда УЗИП ставится в разрыв питающего провода. В этом случае устройство защиты должно иметь номинальный ток нагрузки IL больше максимального рабочего тока цепи, в которую оно установлено.

— V-образный тип подключения, когда рабочий ток цепи протекает по шунту, установленному внутри УЗИП (7). С точки зрения защиты от импульсных перенапряжений это оптимальная конфигурация.

V-образное подключение

Типовая схема Т-образного (параллельного) подключения УЗИП 1+2 класса в сеть TNC-S приведена на 8.

Т-образное подключение УЗИП

Здесь есть одна тонкость, связанная с применением плавких вставок FU 1-3. Существуют рекомендованные производителем УЗИП номиналы данных устройств, например, для УЗИП 1+2 ступени с импульсными токами 25кА (10/350) на фазу оптимальными являются вставки 125А по характеристике gG/gL. При этом номинале через плавкую вставку может пройти импульс 25 кА (10/350) и она останется целой. Если взять вставку меньшего номинала, УЗИП будет недоиспользован, т.к. при приходе мощного импульса плавкая вставка сгорит и исключит из работы вполне исправный УЗИП. Т.е. система защиты будет работать только при импульсах, значительно слабее тех, на которые рассчитан УЗИП. По рекомендациям МЭК номинал входного защитного устройства ВА должен быть на ступень больше, чем номинал предохранителей FU 1-3. В случае невозможности выполнения такого требования, предохранители FU 1-3 можно не устанавливать. При V-образном и последовательном соединении эти дополнительные предохранители отсутствуют в принципе.

Ещё одна особенность Т-образного монтажа УЗИП заключается в том, что длина соединительных проводов между УЗИП и точкой присоединения к сети не должны превышать 0,5м (ГОСТ Р 50571.26-2002). Это связано с тем, что микросекундный импульс перенапряжения является высокочастотным сигналом и имеет очень крутой фронт. А любой проводник, кроме активного сопротивления, имеет ещё и индуктивное. Оно очень маленькое, примерно 1 мкГн/м при сечении провода 16 кв.мм, и на промышленной частоте им обычно пренебрегают. Но при крутизне фронта тока (dI/dt) 1кА/мкс на каждом метре провода падает 1кВ. И это напряжение складывается с остаточным напряжением УЗИП и прикладывается к оборудованию (9). При этом амплитуда импульса может значительно превысить допустимые для данного оборудования значения.

Именно по этой причине нельзя устанавливать вместо предохранителей FU 1-3 автоматические выключатели. Каждый автоматический выключатель содержит катушку индуктивности, стоящую последовательно в рабочей цепи. И в случае их использования при приходе импульса основное напряжение упадёт на автоматическом выключателе, а УЗИП при этом будет работать неэффективно. В результате такое подключение не обеспечит защиту оборудования.

Ещё один вопрос, который обычно встает перед инженером – нужно ли применять УЗИП 2 или 3 класса после устройства типа 1+2, установленного во вводном щите? Ведь уровень напряжения защиты у этого устройства (Up) не более 1,5кВ, что не превышает уровень, характерный для 3 класса. Ответ — не обязательно, если расстояние по кабелю от УЗИП 1+2 класса до защищаемого оборудования не более 15-20м и рядом нет источников сильных наводок. Если же расстояние более 20 метров, то устанавливать необходимо, т.к. ситуация может развиваться, как на 10. Здесь пришедший импульс перенапряжения ограничивается УЗИП до 1,5кВ, а уже внутри здания на него накладывается помеха, наведённая от различного мощного электротехнического оборудования. Сами по себе уровни этих помех не превышают допустимый для защищаемого оборудования, но вместе эти перенапряжения могут привести к сбоям и даже выходу оборудования из строя.

Стоит отметить, что для эффективной защиты от перенапряжений расстояние от места подключения УЗИП 2 или 3 класса до защищаемого оборудования не должно превышать 5м.

Реализация

Традиционно МТЗ реализуются на базе электромеханических токовых реле и реле времени; иногда функция пускового органа и органа выдержки времени может быть совмещена (например в индукционных токовых реле серии РТ-80). В 1970-х годах появились реализации МТЗ на базе полупроводниковых элементов (например в некоторых моделях отечественных автоматических выключателей серий А37, ВА, «Электрон»). В настоящее время имеется тенденция реализации МТЗ на базе микропроцессоров, которые обычно помимо МТЗ выполняют также несколько функций релейной защиты и автоматики: АЧР, АПВ, АВР, дифзащиты и др.

Популярные модели реле контроля напряжения: настройки, схемы монтажа

Несмотря на довольно обширный список производителей подобного оборудования, в нашей стране популярностью пользуются единицы. Сейчас мы поговорим именно о таких брендах и моделях РКН, которые они производят.

Компания «Меандр» и её реле напряжения «УЗМ 51 М»

С самого начала рассказа о подобном реле уточним, что подобные РКН были сняты с производства. После многочисленных жалоб на новый «УЗМ 51 МД» с защитой от дуги, модель вернули, однако, звание «лучшего РН»устройство успело потерять. На сегодняшний день компания «Меандр» производит множество новых моделей приборов защитной автоматики, однако, все они пока «сыроваты» и до «УЗМ 51 М» никак не дотягивают. Подключить устройство довольно просто: на корпусе расписаны вход/выход и отмечены ноль/фаза. Это можно увидеть на картинке.

Внешний вид «УЗМ 51 М» – чётко видно контакты для подключения входа и выхода питанияРеле напряжения Меандр УЗМ 51 М

Реле контроля напряжения «РН113» от «Новатек»

Это устройство пользователи считают более удобным по причине отсутствия необходимости отдельного приобретения вольтметра. Здесь он установлен на самом РКН. Сквозь тонированную крышку современных пластиковых боксов светящиеся цифры, показывающие напряжение в сети в данный момент времени, видны достаточно чётко. Прибор имеет довольно широкий диапазон настроек – 160-220 В для установки нижнего предела и 230-280 В по верхней планке отключения.

Схема подключения реле напряжения РН113Реле напряжения Новатек РН113

Однофазное реле «ABB» и схема его подключения

Под этим брендом, существующем на российском рынке очень давно, производится множество различных моделей защитных устройств, в том числе и реле контроля напряжения. По причине огромного ассортимента рассмотрим общую схему подключения РКН произведённого под брендом «АВВ».

Схема подключения РКН производства «АВВ»Однофазное реле напряжения ABB

Реле напряжения «Legrand»: существует ли подобная продукция

К сожалению, несмотря на очень широкую линейку производимых электротоваров, фирма «Legrand» не производит реле контроля напряжения. Это вдвойне огорчительно по той причине, что остальные изделия и автоматика этого бренда обладают весьма хорошими характеристиками и отменным качеством. Будем надеяться, что под этой маркой в будущем всё же будет производиться нечто подобное. А пока остаётся выбирать устройства от других производителей.

Реле напряжения Legrand

«Зубр» – реле напряжения родом из Донецка

1-фазное реле контроля напряжения «Зубр RBUZ D63t» со встроенным вольтметром ничем не уступает известным европейским брендам. Очень качественное исполнение, долговечность и широкий диапазон настроек – вот причины высокой популярности продукции этого бренда. Нижний предел падения напряжения можно выставить в диапазоне от 120-210 В, а верхний – от 220 до 280 В. При этом, скорость срабатывания при падении ниже установленного предела составляет 1.2 с, а на отключение при скачке выше верхнего порога уходит всего 0.05 с, что позволяет не беспокоиться за сохранность бытовой техники.

Литера «t» в конце маркировки модели говорит о том, что прибор оборудован встроенной термозащитой, что также добавляет плюсов в его копилку. Рассмотрим схему его подключения.

Схема подключения реле контроля напряжения «Зубр»Реле напряжения Зубр

Часто задаваемые вопросы

  1. Есть ли смысл устанавливать плавкий предохранитель на линию нейтрали?

Да, при обрыве линий ЛЭП фаза часто попадает на нейтраль или заземление, в этом случае на розетку могут прийти две разные фазы это 380В. В нейтральную жилу или в заземление может попасть молния это сотни тысяч вольт.

  1. Если через УЗИП при скачке напряжения проходит сотни тысяч вольт, какого сечения провода надо ставить?

Провода устанавливаются с расчетным сечением для всего дома на вводной автомат, если УЗИП ставится на отдельную группу освещения или розеток, то сечение такое же, как и в проводах этой группы. На вводе обычно 10 -16 мм2,

Группы освещения 07-1,5 мм2, розетки 2.5 – 4 мм2.

Классы или типы УЗИП — чем отличаются?

Все УЗИП подразделяются на три класса или три типа. Эти классы подсказывают в каких местах нужно ставить, то или иное устройство.

1 классЗащищает от перенапряжения, спровоцированного прямым попаданием молнии в здание или молниеотвод.

Этот тип рассчитан на пиковое значение тока с фронтом 10/350мс.

Что это означает? Это значит, что рост тока до максимального значения происходит в течение 10мс. Далее его значение падает на 50% через 350мс.

Такое наблюдается именно при прямом ударе молнии. Это очень малое время воздействия, на которое остальные защитные аппараты зачастую  не успевают среагировать. А при достаточном импульсном токе, просто выходят из строя, никак не защищая подключенное оборудование.

А вот УЗИП при максимальных величинах данного параметра гарантированно защитит цепь хотя бы один раз.

УЗИП 1 класса устанавливаются непосредственно на вводных щитовых промышленных и административных зданий.

Тип 1 используется при наличии системы молниезащиты – молниеотвод, металлическая сетка на здании.

Кстати, устройства класса 1 соответствующей конструкции, при воздушном вводе проводом СИП и наличии хорошего контура заземления, можно легко установить непосредственно на опоре через специальные прокалывающие зажимы и арматуру.

2 классОбеспечивает защиту от импульсных скачков напряжения, которые появляются при включении-отключении очень мощного оборудования, либо при непрямом попадании молнии.

Они рассчитаны на пиковое значение тока с фронтом 8/20мс. То есть, максимум тока достигается за 8мс, а спадает он наполовину за 20мс.

Автоматы, УЗО, реле опять же пропускают такой импульс, не успевая среагировать вовремя.

УЗИП 2 класса должны монтироваться в вводных распредустройствах многоквартирных жилых зданий или в уличных ВРУ частных коттеджей и домов.

При воздушном вводе в здание это условие прямо регламентируется правилами ПУЭ.

Получается, что УЗИП Т-2 должны использоваться практически всегда.

3 классЗащищает от остаточных импульсных перенапряжений, образующихся при коротких замыканиях, либо после гашения основного импульса, первыми двумя классами УЗИП.

Третий класс часто встраивают в сетевые фильтры и удлинители.

Эта защита нужна очень чувствительному электронному оборудованию. Например, дорогостоящим медицинским приборам, компьютерам и т.п.

Третий класс применяют только как дополнительную защиту к Т-2, и он имеет более низкую разрядную способность.

Тип Т-3 обязательно устанавливается, если приборы расположены далее 30 метров от вводного УЗИП Т-2.

Обратите внимание, что для обеспечения селективности защиты, нельзя устанавливать УЗИП разных классов параллельно один за другим в одном месте. Иначе максимальный ток молнии изначально пойдет совсем не через то устройство и элементарно сожгет его

Чтобы этого не произошло, между УЗИП разного класса должен быть развязывающий элемент – индуктивность. Роль этой индуктивности выполняет обычный кабель или провод.

Рекомендуемое расстояние между разными УЗИП – не менее 10 метров.

Расцепитель минимального/максимального напряжения типа РММ47 (2009)

Продолжая линейку устройств, защищающих от последствий обрыва нулевого проводника, выводит на рынок очередное дополнительное устройство для автоматических выключателей серии ВА47. Это расцепитель минимально-максимального напряжения РММ47.

Эта новинка с изюминкой, которой нет в других устройствах: при минимальных габаритах РММ47 имеет максимальное функциональное наполнение. По сути, в одном корпусе объединено несколько устройств. Это минимальный расцепитель, максимальный расцепитель, а при настройке на определенный режим работы РММ47 может выполнять функцию независимого расцепителя.

Назначение и область применения

Цитата из паспорта: «Расцепитель минимального/максимального напряжения типа РММ47 ТМ IEK (далее — РММ) предназначен для комплектации автоматических выключателей серии ВА47 и вы* полняет функцию отключения выключателя при недопустимом снижении или повышении напряжения питающей сети». Т.е., говоря обычным языком, защищает нагрузку, если питающее напряжение выходит за допустимые для питающей сети пределы (что может повлечь за собой выход из строя питаемого оборудования).

Причины возникновения отклонений за допустимые рамки могут быть различны, но наиболее вероятной причиной их появления в жилых и офисных зданиях является обрыв нулевого проводника на входе в распределительный щит. Процессы, происходящие в электрических цепях потребителей, уже не единожды рассматривались в материалах «Вестника», поэтому останавливаться на них не будем. Перейдем к собственно устройству.

По своим характеристикам расцепитель РММ47 TM IEK соответствует требованиям технических условий ТУ 3429-02318461115-2008 (см. табл. 1).

Нормальными условиями эксплуатации расцепителя являются:

  • диапазон рабочих температур окружающего воздуха от -40 до + 50°С;
  • высота над уровнем моря — не более 2000 м;
  • относительная влажность 80% при 25°С;
  • рабочее положение в пространстве — вертикальное с возможным отклонением в любую сторону до 90°;
  • группа механического исполнения М4 по ГОСТ 17516.1.

Внешне РММ47 ничем, кроме маркировки, не отличается от прочих дополнительных устройств из перечня для модульной серии ВА47, предназначенных для автоматического отключения по внешнему условию (независимый расцепитель, минимальный расцепитель и т.п.). Т.е. габаритные размеры и способ присоединения к автоматическому выключателю такой же. Каждое устройство комплектуется набором необходимых крепежных элементов, как прочие доп. устройства.

Монтаж и эксплуатация

Монтаж и подключение расцепителя должны осуществляться только квалифицированным электротехническим персоналом.

Проектировщики должны помнить, что модульное оборудование устанавливают в электрощитах со степенью защиты не ниже IP30 по ГОСТ 14254.

ВНИМАНИЕ! Расцепитель предназначен только для работы с однополюсными, двухполюсными, трехполюсными выключателями типа ВА47-29, ВА47-29М, ВА47-100. Он не предназначен для работы с четырехполюсными выключателями!

РММ47 оснащен устройством индикации срабатывания защиты (см

рис. 1). При срабатывании защиты по минимальному/максимальному напряжению либо при срабатывании защиты автоматического выключателя, нажимная кнопка «Возврат» на лицевой панели расцепителя переходит в отжатое положение и расцепитель блокирует механизм взвода автоматического выключателя. Для повторного включения автоматического выключателя необходимо нажать кнопку «Возврат»

РММ47 оснащен устройством индикации срабатывания защиты (см. рис. 1). При срабатывании защиты по минимальному/максимальному напряжению либо при срабатывании защиты автоматического выключателя, нажимная кнопка «Возврат» на лицевой панели расцепителя переходит в отжатое положение и расцепитель блокирует механизм взвода автоматического выключателя. Для повторного включения автоматического выключателя необходимо нажать кнопку «Возврат».

Устройство РММ47 выполнено из высококачественных материалов. Оно выдержало множество различных испытательных процедур и доказало свою надежность. Это позволяет указывать гарантийный срок эксплуатации РММ47 5 лет с момента его продажи при условии соблюдения потребителем условий транспортирования, хранения и эксплуатации.

Таблица 1

Основные технические параметры расцепителя

Параметр Значение
Номинальное рабочее напряжение Ue, В 230
Номинальная рабочая частота, Гц 50
Напряжение срабатывания, В минимального расцепителя 165±10
максимального расцепителя 265±10
Диапазон рабочих напряжений*, В 50275
Типы совместимых автоматических выключателей одно-, двух-, трехполюсные ВА47-29, ВА47-29М, ВА47-100
Сторона присоединения к автоматическому выключателю правая

Реализация

Традиционно МТЗ реализуются на базе электромеханических токовых реле и реле времени; иногда функция пускового органа и органа выдержки времени может быть совмещена (например в индукционных токовых реле серии РТ-80). В 1970-х годах появились реализации МТЗ на базе полупроводниковых элементов (например в некоторых моделях отечественных автоматических выключателей серий А37, ВА, «Электрон»). В настоящее время имеется тенденция реализации МТЗ на базе микропроцессоров, которые обычно помимо МТЗ выполняют также несколько функций релейной защиты и автоматики: АЧР, АПВ, АВР, дифзащиты и др.

Правила и особенности установки

Установку устройств защиты от перенапряжения регламентируют Правила устройства электроустановок (ПУЭ), являющиеся основным нормативным документом в вопросах безопасного обслуживания электрических установок. Согласно требованиям ПУЭ, устройства защиты от перенапряжения подлежат обязательной установке на объектах с предусмотренной системой молниезащиты, а также в домах, электроснабжение которых осуществляется по проводам воздушных линий, в регионах, с годовой продолжительностью грозовых периодов, превышающих 25 часов.

Необходимость подключения УЗИП на объектах в районах, где грозы не являются частым явлением, носит рекомендательный характер, однако, учитывая, к каким разрушительным последствиям может привести прямой удар молнии, целесообразно выполнить все необходимые мероприятия для защиты от данного вида стихии даже для негрозоопасной местности.

Защита от импульсных напряжений промышленных и административных зданий, многоквартирных домов входит в сферу деятельности электромонтажных организаций. Установка и подключение УЗИП в частном доме или в квартире ложится на плечи хозяина жилья, поэтому каждому домовладельцу необходимо, хотя бы в общих чертах, знать основные правила обустройства защиты от импульсных перенапряжений, а также как установить и как подключить необходимое для этого оборудование.

Монтаж УЗИП необходимо выполнить соблюдая требования технических нормативов, которые предусматривают 3 уровня защиты. В качестве первого уровня защиты находят применение вентильные разрядники, которые относятся к категории УЗИП 1 класса. Они обеспечивают защиту от непосредственных грозовых воздействий на линии электропередач и устанавливаются в ВРУ (вводных распределительных устройствах). Дополнительная защита от удара молний и коммутационных процессов в понижающих трансформаторных подстанциях обеспечивается защитными аппаратами 2 класса, которые устанавливаются и подключаются в распределительных щитах дома или квартиры. Для защиты электроники и электротехники, чувствительной даже к незначительным импульсным перенапряжениям служат УЗИП 3 класса, подключение которых производится в щитке питания потребителей в непосредственной близости от них.

Как установить оборудование для того, чтобы обеспечить трехступенчатую защиту от импульсных перенапряжений, показано на схеме:

Более доступное объяснение:

Ограничители импульсных напряжений (ОИН) ОИН1, ОИН2

ОИН1, ОИН2

РМЕА 656111.011 ТУ Предназначены для защиты электрооборудования и бытовых приборов от грозовых и импульсных перенапряжений. ОИН1 — без индикатора рабочего состояния; ОИН2 — с индикатором рабочего состояния.

Нормативно-правовое обеспечение

  • Отвечают требованиям ТР ТС 004/2011 «О безопасности низковольтного оборудования», других стандартов и ПУЭ».
  • Отвечает требованиям к защите от перенапряжений по ГОСТ Р 50571.19

Функциональные возможности

ОИН1 — ограничитель импульсных напряжений моноблок с варистором; по заказу световой индикатор наличия напряжения сети. ОИН2 — ограничитель импульсных напряжений моноблок с варистором, световой индикатор рабочего состояния, световая индикация напряжения сети.

Конструктивные особенности

Ограничитель импульсных напряжений (ОИН) обеспечивает:

  • Максимальное длительное рабочее напряжение 275 В частотой 50 Гц
  • Рабочий потребляемый ток при напряжении 275 В не превышает 0,7 мА
  • Выполнен в виде унифицированного модуля шириной 17,5 мм для монтажа на рейке 35/7мм
  • Выдерживает воздействие импульсов комбинированной волны с напряжением разомкнутой цепи 10,0 кВ и с током короткозамкнутой цепи 5 кА
  • Обеспечивает защиту оборудования от импульсного перенапряжения категории II по ГОСТ Р 50571.19-2000 (уровень напряжения защиты 2,0 кВ)
  • Выдерживает без повреждений воздействие временного перенапряжения 380 В
  • Классификация по тепловой защите: ОИН1 и ОИН2 — без тепловой защиты.
  • Классификация по наличию индикатора состояния: ОИН1 — без индикатора; ОИН1С (по дополнительному заказу) — со световым индикатором наличия напряжения сети; ОИН2 — со световым индикатором рабочего состояния.
  • Классификация по ремонтопригодности: ОИН1 и ОИН2 — моноблочные (неремонтируемые в условиях эксплуатации).
  • Допускает присоединение проводников сечением от 4 до 16 мм
Наименование характеристики Значение параметров
Номинальное напряжение питающей сети, В 220
Номинальный разрядный ток, кА 5; 10; 20
Максимальный разрядный ток, кА 12,5; 25; 50
Остаточное напряжение при номинальном токе не выше, В 2000
Класс испытаний по ГОСТ Р 51992 II
Степень защиты, обеспечиваемая оболочками не ниже IP20
Температура окружающего воздуха, С от -45 до 55
Габаритные разметы, мм 80 x 17,5 x 65,5
Масса, не более, кг 0,12
Гарантийный срок эксплуатации, лет 3

www.energomera.ru

Функции реле перегрузки

Реле перегрузки:

• При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.

• Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.

• Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

IEC и NEMA стандартизуют классы срабатывания реле перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 — в течение 30 секунд и менее.

Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 — самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.

Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.

Сочетание плавких предохранителей с реле перегрузки

Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.

На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.

Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания

Схемы подключения РКН

В щитке реле напряжения всегда устанавливается после счетчика в разрыв фазного провода. Он должен контролировать и по необходимости отсекать именно «фазу». Никак по-другому его подключать нельзя.

Основных схем подсоединения однофазных реле регулятора сетевого напряжения существует две:

  • с прямой нагрузкой через РКН;
  • с подсоединением нагрузки через контактор – с подключением магнитного пускателя.

При монтаже электрощита в доме практически всегда применяется первый вариант. Разнообразных моделей РКН с необходимой мощностью в продаже предостаточно. Плюс при необходимости этих реле можно установить по параллельной схеме и несколько, подключив к каждому из них отдельную группу электроприборов.

С монтажом все предельно просто. На корпусе стандартного однофазного реле имеется три клеммы – «нуль» плюс фазные «вход» и «выход». Надо лишь не перепутать подсоединяемые провода.

Тепловая защита.

Данный вид защиты необходим при незначительных, но длительных токовых перегрузках, которые нарушают изоляцию обмоток и способствуют выходу двигателей из строя. Основу защиты составляют температурные и тепловые реле, которые могут быть встроены в пускозащитную аппаратуру или непосредственно в электродвигатели, что является более надежной защитой. В магнитные пускатели серии ΓΙΜΕ встраивают тепловые реле серии ТРН, в пускатели серии ПА — реле серий ТРН и ТРП. Основу тепловых реле составляет биметаллическая пластина, т. е. пластина из двух разнородных металлов, жестко скрепленных между собой за счет проката в горячем состоянии или за счет? сварки. Для этого в тепловых реле применяют материалы: инвар с малым значением температурного коэффициента расширения и немагнитную или хромоникелевую сталь е большим температурным коэффициентом расширения. При нагреве за счет различного теплового расширения металлов пластина изгибается (один ее конец закреплен жестко, второй свободно) и свободным концом воздействует на контактную систему. Нагрев может производиться за счет тепла, выделяемого в пластине током нагрузки. Однако для лучшей работы внутри или снаружи биметаллической пластины помещают специальный нагреватель из нихрома, по которому также протекает ток нагрузки. . Самовозврат реле осуществляется пружиной после остывания биметалла или вручную рычагом с кнопкой (ускоренный возврат). В шахтные асинхронные электродвигатели для защиты от опасного перегрева, связанного с перегрузками производственного характера, обрывом фазы, ухудшением охлаждения, встраивают дифференциальные температурные реле ДТР-ЗМ, которые осуществляют защиту двигателей любой мощности и с любым классом изоляции. Принцип действия реле основан на реакции на абсолютную температуру и скорость нарастания температуры в обмотке двигателя. Рис. 29. Температурное реле ДТР-ЗМ

Реле (рис. 29) состоит из контактной группы 7, 6 и термобиметаллических пластин 4 и 5, изгибающихся в одну сторону и размещенных в термоизоляционном корпусе 1, закрытом медной крышкой 2, которая служит также для передачи тепла к теплочувствительным элементам. Выводными концами пластин 5 и 6 термореле включается в цепь управления магнитным пускателем или в схему сигнализации перегрева обмотки двигателя. Уставка срабатывания регулируется винтом 9, а скорость изменения температуры — винтом 3, При нагреве обмотки статора до температуры уставки срабатывания контакты реле размыкаются, электродвигатель отключается от сети или срабатывает сигнализация. Масса реле около 8 г.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Раздольная энергия
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: