Как рассчитать трехфазную сеть
В качестве примера можно взять некие производственные площади с установленным оборудованием и по этим исходным данным делать расчет мощности трехфазного тока.
В каждом станке используется электродвигатель. Их общая мощность Ру1 составляет 50 кВт, с учетом активной мощности. Кроме того, в помещении установлены осветительные приборы общей мощностью (Ру2) – 3 кВт. Символ Ру обозначает величину установленной суммарной мощности для конкретных групп потребителей. Работа оборудования осуществляется от трехфазной сети с 4 проводами и номинальным напряжением 380 В.
Кроме того, при расчетах учитывается коэффициент спроса Кс, действующий в режиме максимальной нагрузки. Он учитывает наивысшее количество включений потребителей данной группы. Для электродвигателей Кс1 берется с учетом величины их загруженности и составляет 0,35. Для приборов освещения Кс2 составляет 0,9. Все потребители выравниваются усредненным коэффициентом мощности cos φ = 0,75.
Расчеты начинаются с определения силовой нагрузки Р1 = 0,35 х 50 = 17,5 кВт. Далее рассчитывается осветительная нагрузка Р2 = 0,9 х 3 = 2,7 кВт. Таким образом, величина полной расчетной нагрузки составит Р = Р1 + Р2 = 17,5 + 2,7 = 20,2 кВт.
Для определения и расчета тока используется формула I = (1000 x P)/(1,73 x Uн x cos φ), в которой Р является расчетной мощностью потребителей, Uн – номинальным напряжением 380 вольт, cos φ – коэффициентом мощности.
Подставив нужные значения, находим значение силы и мощности по току: I = (1000 x 20,2)/(1,73 x 380 x 0,75) = 41 А. Полученный результат дает возможность узнать, сможет ли сеть обеспечить нормальную работу потребителей.
Кулон и электрический заряд
Одна из основных единиц электрических измерений, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, – это кулон – единица измерения электрического заряда, пропорциональная количеству электронов в несбалансированном состоянии. Один кулон заряда соответствует 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается «Кл». Единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этом смысле, ток – это скорость движения электрического заряда через проводник.
Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении). В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.
Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.
Простые примеры расчета
Бытовая сеть переменного тока
Пример №1. Проверка ТЭНа.
В стиральную машину встроен трубчатый электронагреватель 1,25 кВт на 220 вольт. Требуется проверить его исправность замером сопротивления. По мощности рассчитываем ток и сопротивление.
Проверяем расчет сопротивления калькулятором по току и напряжению. Данные совпали. Можно приступать к электрическим замерам.
Пример №2. Проверка сопротивления двигателя
Допустим, что мы купили моющий пылесос на 1,6 киловатта для уборки помещений. Нас интересует ток его потребления и сопротивление электрического двигателя в рабочем состоянии. Считаем ток:
Вводим в графы калькулятора напряжение 220 вольт и ток 7,3 ампера. Запускаем расчет. Автоматически получим данные:
- сопротивление двигателя — 30,1 Ома;
- мощность 1600 ватт.
Цепи постоянного тока
Рассчитаем сопротивление нити накала галогенной лампочки на 55 ватт, установленной в фаре автомобиля на 12 вольт.
Считаем ток:
Вводим в калькулятор 12 вольт и 4,6 ампера. Он вычисляет:
- сопротивление 2,6 ома.
- мощность 5 ватт.
Здесь обращаю внимание на то, что если замерить сопротивление в холодном состоянии мультиметром, то оно будет значительно ниже. Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложной пускорегулирующей аппаратуры, необходимой для светодиодных и люминесцентных светильников
Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложной пускорегулирующей аппаратуры, необходимой для светодиодных и люминесцентных светильников.
Другими словами: изменение сопротивления вольфрама при нагреве до раскаленного состояния ограничивает возрастание тока через него. Но в холодном состоянии металла происходит бросок тока. От него нить может перегореть.
Для продления ресурса работы подобных лампочек используют схему постепенной, плавной подачи напряжения от нуля до номинальной величины.
В качестве простых, но надежных устройств для автомобиля часто используется релейная схема ограничения тока, работающая ступенчато.
При включении выключателя SA сопротивление резистора R ограничивает бросок тока через холодную нить накала. Когда же она разогреется, то за счет изменения падения напряжения на лампе HL1 электромагнит с обмоткой реле KL1 поставит свой контакт на удержание.
Он зашунтирует резистор, чем выведет его из работы. Через нить накала станет протекать номинальный ток схемы.
Как работает наш расчет мощности?
Нет необходимости прибегать к определенным математическим расчетам для определения значений напряжения (V), тока (I), мощности (P) и сопротивления (R). Наш калькулятор сопротивления сделает все за вас за пару секунд. Наш (калькулятор закона Ома) не только удобен в использовании, но и работает эффективно! Давайте взглянем!
- В приведенном выше калькуляторе закона Ома вы можете найти четыре поля: напряжение (В), ток (I), сопротивление (R) и мощность (P), соответственно.
- Вам просто нужно ввести любые два из этих значений относительно их единиц СИ.
- После того, как вы выбрали два значения и их единицы СИ, вам просто нужно нажать кнопку вычисления, чтобы получить оставшиеся два значения.
Как упоминалось выше, вы получите свои результаты относительно единиц СИ, которые вы выбрали перед расчетом!
Электромагнитная индукция (самоиндукция)
Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.
Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.
В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора.
Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.
Для электрического тока постоянной направленности характерны другие проявления этой силы, такие, например, как разность потенциалов на полюсах гальванического элемента, о чем мы расскажем далее.
Электродвигатели и генераторы
Тот же электромагнитный эффект наблюдается в конструкции асинхронного или синхронного электродвигателя, основной элемент которых — это индуктивные катушки. О его работе доступным языком рассказывается во многих учебных пособиях, относящихся к предмету под названием «Электротехника». Для понимания сути происходящих процессов достаточно вспомнить, что ЭДС индукции наводится при перемещении проводника внутри другого поля.
По упомянутому выше закону электромагнитной индукции, в обмотке якоря двигателя во время работы наводится встречная ЭДС, которую часто называют «противо-ЭДС», потому что при работе двигателя она направлена навстречу приложенному напряжению. Это же объясняет резкое возрастание тока, потребляемого двигателем при повышении нагрузки или заклинивании вала, а также пусковые токи. Для электрического двигателя все условия появления разности потенциалов налицо – принудительное изменение магнитного поля ее катушек приводит к появлению вращающего момента на оси ротора.
В другом электротехническом устройстве – генераторе, все обстоит точно так же, но происходящие в нем процессы имеют обратную направленность. Через обмотки ротора пропускают электрический ток, вокруг них возникает магнитное поле (могут использоваться постоянные магниты). При вращении ротора поле, в свою очередь, наводит ЭДС в обмотках статора — с которых снимают ток нагрузки.
Еще немного теории
При проектировании таких схем учитываются распределение токов и падение напряжения на отдельных элементах. Для расчета распределения первого параметра применяется известный из физики второй закон Кирхгофа — сумма падений напряжений (с учетом знака) на всех ветвях замкнутого контура, равна алгебраической сумме ЭДС ветвей этого контура), а для определения их величин используют закон Ома для участка цепи или закон Ома для полной цепи, формула которого приведена ниже:
I=E/(R+r),
где E – ЭДС, R – сопротивление нагрузки, r – сопротивление источника питания.
Внутреннее сопротивление источника питания — это сопротивление обмоток генераторов и трансформаторов, которое зависит от сечения провода, которым они намотаны и его длины, а также внутреннее сопротивление гальванических элементов, которое зависит от состояния анода, катода и электролита.
При проведении расчетов обязательно учитывается внутреннее сопротивление источника питания, рассматриваемое как параллельное подключение к схеме
При более точном подходе, учитывающем большие значения рабочих токов, принимается во внимание сопротивление каждого соединительного проводника
Какие бывают виды регуляторов?
Существует два вида регуляторов, доступных на сегодняшнем рынке:
- на переменном резисторе,
- электронный (шаговый и подвижный).
Все они обладают разными способами управления скоростью вращения и, посему, эффективность (потребление электроэнергии) у каждого вида отличается. С этой точки зрения, классический регулятор – самый дешевый, но неэффективный. Давайте рассмотрим все три типа.
Электронный регулятор
Электронные – это новейшие типы из доступных регуляторов на рынке. Они намного меньше по размерам, чем другие. Для понижения напряжения в них используются вместо резисторов конденсаторы, которые регулируя скорость вращения, управляют сигналом электропитания. В отличие от реостатов не нагреваются и, значит, экономят электроэнергию, когда мотор работает на малых скоростях.
Регуляторы способны сэкономить до 40% на «1» скорости и около 30% на «2-й» скорости по сравнению со своими резисторными аналогами. Существуют электронные разновидности регуляторов:
- подвижные с плавным регулированием.
- шаговые с пронумерованной скоростью действия (обычно от 1 до 5).
Эти устройства обеспечивают низкий уровень искажений движения мотора и, следовательно, меньше нагреваются. Вариант с лучшей технологией и экономией электричества.
Расчет косинуса фи (cos φ)
φ – угол сдвига между фазой тока и напряжения, причем если последний опережает ток сдвиг считается положительным, если отстает, то отрицательным.
cos φ – безразмерная величина, которая равна отношению активной мощности к полной и показывает насколько эффективно используется энергия.
Формула расчета косинуса фи: cos φ = S / P
- S – полная мощность, ВА (Вольт-ампер);
- P – активная мощность, Вт.
Активная мощность (P) — реальная, полезная, настоящая мощность, эта нагрузка поглощает всю энергию и превращает ее в полезную работу, например, свет от лампочки. Сдвиг по фазе отсутствует.
Формула расчета активной мощности: P (Вт) = I × U × cos φ
Реактивная мощность (Q) — безваттная (бесполезная) мощность, которая характеризуется тем, что не участвует в работе, а передается обратно к источнику. Наличие реактивной составляющей считается вредной характеристикой цепи, поскольку главная цель существующего электроснабжения — это сокращение издержек, а не перекачивание ее туда и обратно. Такой эффект создают катушки и конденсаторы.
Формула расчета реактивной мощности: P (ВАР) = I × U × sin φ
Управление асинхронным двигателем
- Способы подключения асинхронного электродвигателя к сети питания:
- прямое подключение к сети питания
- подключение от устройства плавного пуска
- подключение от преобразователя частоты
Прямое подключение к сети питания
Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.
С помощью магнитных пускателей можно реализовать схему:
- нереверсивного пуска: пуск и остановка;
- реверсивного пуска: пуск, остановка и реверс.
Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.
Реверсивная схема
Недостатком прямой коммутации обмоток асинхронного электродвигателя с сетью является наличие больших пусковых токов, во время запуска электродвигателя.
Плавный пуск асинхронного электродвигателя
В задачах, где не требуется регулировка скорости электродвигателя во время работы для уменьшения пусковых токов используется устройство плавного пуска.
Устройство плавного пуска защищает асинхронный электродвигатель от повреждений вызванных резким увеличением потребляемой энергии во время пуска путем ограничения пусковых токов. Устройство плавного пуска позволяет обеспечить плавный разгон и торможение асинхронного электродвигателя.
Устройство плавного пуска дешевле и компактнее частотного преобразователе. Применяется там, где регулировка скорости вращения и момента требуется только при запуске.
Частотное управление асинхронным электродвигателем
Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.
- Использование частотного преобразователя позволяет:
- уменьшить энергопротребление электродвигателя;
- управлять скоростью вращения электродвигателя (плавный запуск и остановка, регулировка скорости во время работы);
- избежать перегрузок электродвигателя и тем самым увеличить его срок службы.
- В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
- скалярное управление;
- векторное управление.
Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).
Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.
Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.
Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.
- По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
- полеориентированное управление по датчику;
- полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).
Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.
Работа энергии
Работа, совершаемая энергией, более сложное понятие, для определения которого необходимо знание того, что есть консервативные силы. Консервативные силы — это силы, чья работа не имеет зависимости от путей движения тел и определяется исключительно точкой начала движения и его конца. Ярким примером подобных сил является всем известное притяжение. Энергия, приводящая в действие тела в процессе воздействия на них консервативных сил, именуется потенциальной. Согласно теореме, работа, совершаемая в данном случае, есть величина, отражающая изменение потенциальной энергии, которая берется с противоположным знаком.
Применение закона Ома на практике
На практике часто приходится определять не силу тока I, а величину сопротивления R. Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R, зная протекающий ток I и величину напряжения U.
Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.
Как понять закон Ома?
Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.
Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе. Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.
Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)
Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.
Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.
В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.
Ток в проводнике
В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.
Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!
Как определить мощность электродвигателя
Как устроен электродвигатель
В основе работы мотора лежит принцип электромагнитной индукции. Прибор состоит из двух частей. Неподвижная часть — статор для двигателей переменного тока или индуктор для двигателей постоянного тока. Подвижная часть — ротор для двигателей переменного тока или якорь для двигателей постоянного тока. Производители выпускают моторы разных технических характеристик и комплектаций, но подвижная и неподвижная часть остаются без изменений.
Что такое мощность электродвигателя
Мощность электродвигателя характеризует скорость преобразования электрической энергии, ее принято измерять в ваттах. Чтобы понять, как это работает, нам понадобится две величины: сила тока и напряжение. Сила тока — количество тока, которое проходит через поперечное сечение за какой-то отрезок времени, ее принято измерять в амперах. Напряжение — величина, равная работе по перемещению заряда между двумя точками цепи, ее принято измерять в вольтах.
Если говорить простыми словами, силу тока и напряжение можно сравнить с водой. Сила тока — скорость, с которой течет вода по трубам. Напряжение видно на примере двух емкостей, соединенные между собой трубкой. Если вы поставите одну емкость выше другой, вода будет вытекать до тех пор, пока уровни в обеих емкостях не сравняются. Именно перепад высот и будет напряжением. После того, как вы поставите заглушку между двумя емкостями, течение воды (ток) остановится, но напряжение останется.
Для расчета мощности используется формула N = A/t, где:
Расчет мощности электродвигателя
Производители указывают на электрооборудовани все технические параметры. «Зачем тогда делать какой-то расчет?», — скажете вы. Но дело в том, что заявленная мощность — это не фактическая мощность электродвигателя, а максимально допустимая мощность электропотока. Так что, если на вашей технике или инструменте указана мощность, к примеру, в 1000 Вт, это совсем не то, о чем вы думаете.
Три способа определить мощность электродвигателя
Для расчета мощности существует не один десяток способов. Мы не будем говорить о каждом из них, остановившись лишь на самым простых и доступных.
Первый способ. Расчет по таблицам
Для этого способа расчета вам понадобится линейка или штангенциркуль. С их помощью измерьте диаметр вала вашего электродвигателя, длину мотора (выступающие части вала не учитывайте) и расстояние до оси. С использованием полученных цифр вы сможете определить мощность электродвигателя по таблицам технических характеристик двигателей. Найти такие таблицы не составит труда — они есть в открытом доступе в сети интернет. Открыв таблицу, определите серию электродвигателя и, соответственно, его технические характеристики.
Второй способ. Расчет по счетчику
Указанный способ считается самым простым, вам не понадобятся ни дополнительное оборудование, ни расчеты. Перед тем, как приступить к измерению мощности электродвигателя, выключите все электроприборы из сети. Включите испытуемый электродвигатель и запустите его в работу на 5-7 минут. Если в вашем доме установлен современный счетчик, он покажет нагрузку в киловаттах.
Третий способ. Расчет по габаритам
Для этого способа вам понадобится линейка или штангенциркуль. Измерьте диаметр сердечника с внутренней стороны и длину (учитывайте длину отверстий вентиляции). Определите частоту сети и синхронную частоту вращения вала. Умножьте диаметр сердечника в сантиметрах на синхронную частоту вращения вала, полученное значение умножьте на 3,14, поделите на частоту сети, умноженную на 120.
Расчет потребляемой мощности
Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.
Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.
Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.
Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации
Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.
https://youtube.com/watch?v=dwaSF3W4TxU
Мощность при параллельном соединение
При параллельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.
Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:
- 1/R = 1/R1+1/R2+1/R3+1/R4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
- Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
- Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
- Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом: P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт.
- Расчет силы тока для каждого резистора выполняется по формулам: I1 = U/R1 = 100/200 = 0,5A; I2 = U/R2 = 100/100 = 1A; I3 = U/R3 = 100/51 = 1,96A; I4 = U/R4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.
Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов: P1 = U 2 /R1 = 100 2 /200 = 50 Вт; P2 = U 2 /R2 = 100 2 /100 = 100 Вт; P3 = U 2 /R3 = 100 2 /51 = 195,9 Вт; P4 = U 2 /R4 = 100 2 /39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р1+Р2+Р3+Р4 = 50+100+195,9+256,4 = 602,3 Вт.
Таким образом, мощность при последовательном и параллельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.
Последовательное и параллельное соединение резисторов
Напряжение при последовательном и параллельном соединении резисторов
Сопротивление при последовательном и параллельном соединении резисторов
Параллельное соединение резисторов
Последовательное и параллельное соединение проводников
Как определить по внешнему виду
На принципиальной схеме указана нужная мощность резистора — тут все понятно. Но как определить мощность сопротивления по внешнему виду на печатной плате? Вообще, чем больше размер корпуса, тем больше тепла он рассеивает. На достаточно крупных по размеру сопротивлениях указывается номинальное сопротивление и его мощность в ваттах.
Тут есть некоторая путаница, но не все так страшно. На отечественных сопротивлениях рядом с цифрой ставят букву В. В зарубежных ставят W. Но эти буквы есть не всегда. В импортных может стоять V или SW перед цифрой. Еще в импортных может тоже стоять буква B, а в отечественных МЛТ может не стоять ничего или буква W. Запутанная история, конечно. Но с опытом появляется хоть какая-то ясность.
Как определить мощность резистора: стоит в маркировке
А ведь есть маленькие резисторы, на которых и номинал-то с трудом помещается. В импортных он нанесен . Как у них узнать мощность рассеивания?
В старом ГОСТе была таблица соответствий размеров и мощностей. Резисторы отечественного производства по прежнему делают в соответствии с этой таблицей. Импортные, кстати, тоже, но они по размерам чуть меньше отечественных. Тем не менее их также можно идентифицировать. Если сомневаетесь, к какой группе отнести конкретный экземпляр, лучше считать что он имеет более низкую способность рассеивать тепло. Меньше шансов, что деталь скоро перегорит.
Тип резистора | Диаметр, мм | Длинна, мм | Рассеиваемая мощность, Вт |
---|---|---|---|
ВС | 2,5 | 7,0 | 0,125 |
УЛМ, ВС | 5,5 | 16,5 | 0,25 |
ВС | 5,5 | 26,5 | 0,5 |
7,6 | 30,5 | 1 | |
9,8 | 48,5 | 2 | |
25 | 75 | 5 | |
30 | 120 | 10 | |
КИМ | 1,8 | 3,8 | 0,05 |
2,5 | 8 | 0,125 | |
МЛТ | 2 | 6 | 0,125 |
3 | 7 | 0,125 | |
4,2 | 10,8 | 0,5 | |
6,6 | 13 | 1 | |
8,6 | 18,5 | 2 |
С размерами сопротивлений и их мощностью вроде понятно. Не все так однозначно. Есть резисторы большого размера с малой рассеивающей способностью и наоборот. Но в таких случаях, проставляют этот параметр в маркировке.
Мощность SMD-резисторов
SMD-компоненты предназначены для поверхностного монтажа и имеют миниатюрные размеры. Мощность резисторов SMD определяется по размерам. Также она есть в характеристиках, но необходимо знать серию и производителя. Таблица мощности СМД резисторов содержит наиболее часто встречающиеся номиналы.
Размеры SMD-резисторов — вот по какому признаку можно определить мощность этих элементов
Код imperial | Код metrik | Длинна inch/mm | Ширина inch/mm | Высота inch/mm | Мощность, Вт |
---|---|---|---|---|---|
0201 | 0603 | 0,024/0,6 | 0,012/0,3 | 0,01/0,25 | 1/20 (0,05) |
0402 | 1005 | 0,04/1,0 | 0,02/0,5 | 0,014/0,35 | 1/16 (0,062) |
0603 | 1608 | 0,06/1,55 | 0,03/0,85 | 0,018/0,45 | 1/10 (0,10) |
0805 | 2112 | 0,08/2,0 | 0,05/1,2 | 0,018/0,45 | 1/8 (0,125) |
1206 | 3216 | 0,12/3,2 | 0,06/1,6 | 0,022/0,55 | 1/4 (0,25) |
1210 | 3225 | 0,12/3,2 | 0,10/2,5 | 0,022/0,55 | 1/2 (0,50) |
1218 | 3246 | 0,12/3,2 | 0,18/4,6 | 0,022/0,55 | 1,0 |
2010 | 5025 | 0,20/2,0 | 0,10/2,5 | 0,024/0,6 | 3/4 (0,75) |
2512 | 6332 | 0,25/6,3 | 0,12/3,2 | 0,024/0,6 | 1,0 |
В общем-то, у этого типа радиоэлементов нет другого оперативного способа определения тока, при котором они могут работать, кроме как по размерам. Можно узнать по характеристикам, но их найти не всегда просто.
Заключение
Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение
Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.
Напоследок рекомендуем просмотреть полезное видео по теме статьи:
Также читают:
{SOURCE}